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Abstract

We develop angular models to constrain anisotropies in the sky distribution of compact binary merger
events. Beginning with a simple dipole model, we simulate upper bounds on the dipole magnitude with
an increasing number of observations. We find that as the number of simulated samples increases, the
upper bound decreases according to the inverse square root of the number of samples. Using current GW
events from LVK, we derive an upper bound from real data that agrees with the simulation and calculate a
Bayes factor of 1.12 in preference of isotropy over the dipole model. We also develop a quadrupole model,

for which we devise a value for the upper limit and perform a similar analysis, arriving at the same

relationship.

1 Bayesian Statistics

For many years, the standard statistical approach to
scientific methods has been that of frequentist statis-
tics. Frequentist philosophy rationalizes statistics
and probabilities as the results of repeated exper-
iments. In other words, should an experiment be
repeated a large number of times, the data should
obey a distribution with some precisely defined pa-
rameters (e.g. mean, variance, etc.). Bayesian statis-
tics presents an alternate mode of thinking regarding
these distribution parameters. In Bayesian philoso-
phy, the parameters themselves follow a distribution.
When scientific experiments are performed, the re-
sulting population parameters are drawn from this
distribution. More rigorously, Bayesian statistics is
derived from Bayes’s Theorem. Begin with:

P(A, B) = P(A|B)P(B)

Similarly,

P(A, B) = P(B|A)P(A)
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Setting equal and rearranging, we arrive at Bayes’s
Theorem
P(B|A)P(A)

P(B)

From here, let’s say that A is the distribution pa-
rameters § and B the data collected x. We rewrite
as:

P(A|B) =

P(x]0)P(9)
Pl) (1)

The left hand side of the equation becomes what
is known as a posterior distribution. It is the dis-
tribution of the parameters given the collected data.
From here, P(z|0) is typically rewritten as £(x|0) and
is known as the likelihood function, which repre-
sents the probability of the data being collected given
a set value for the parameters. P(6) is rewritten as
m(0) and referred to as the prior distribution. It
represents prior knowledge of the parameters inserted
by researchers. Last, P(x) is the evidence. Because
it behaves as a normalization constant, the governing
equation is often written as:

Pb|z) =

p(0|x) oc L(x|0)7(0)



The implementation of Bayesian statistical meth-
ods can be beneficial for many scientific fields. It
allows for a rather straightforward method of model
comparison, which will be discussed, and it is more
consistent philosophically with how researchers con-
duct experiments. When planning and performing
experiments, researchers always have some educated
preconceptions regarding the possible values for a pa-
rameter, hence the existence of priors. Additionally,
studies are often expanded upon after their comple-
tion. When this occurs, it is common practice in
Bayesian methodology to utilize the posterior distri-
butions acquired in previous experiments as priors
for subsequent ones. Historically, the primary road-
block preventing Bayesian statistics from entering the
mainstream was computational power, which is not
as major of an obstacle now as it once was. With
modern computing capabilities, the last few decades
have seen Bayesian statistics reach a level of practi-
cality for mainstream science. Due to the advantages
is presents in addition to its growing accessibility
and practicality, Bayesian statistics is quickly gain-
ing popularity. As the scientific community continues
advancing, it is possible that the Bayesian approach
may one day surpass its frequentist counterpart.

In gravitational wave astronomy, the Bayesian ap-
proach provides an additional benefit. Gravitational
wave detections, though greatly increasing in num-
ber, are still very few and far between. Therefore, it
is illogical to consider the frequentist idea of ‘repeated
experiment’ when experiments cannot be repeated or
reasonably replicated. In gravitational wave experi-
ment, Bayesian statistics allows researchers to maxi-
mize the value of the little data available for analysis.

Bayes Factor

To compare models M; and My, it is sufficient to
evaluate

p(Myfr) _
p(Ms]z)

L(z|My) m(My)
L(x| M) m(Ma)

(2)

observing that p(z) is independent of model and
therefore cancels. Notice that the £(z|M) terms in
Eq. 2 are actually identical to the P(z) evidence term

from Eq. 1, as there is a model implicit throughout
all of Eq. 1.

Practically speaking, L(x|M) is numerically
straightforward to calculate; it is just the normaliza-
tion factor for L(x|6, M)n (6, M), meaning L(z|M) =
[ L(x|6, M)m(0, M)do.

The prior ratio represents prior belief in the mod-
els, which is simply 1 if there is no preference. The
likelihood ratio is known as the Bayes factor B%; and
is used in model comparison.

2 ICAROGW and Hierarchical
Bayesian Inference

When studying population properties, gravitational
wave data sets are exceptionally complicated to work
with and present a number of challenges to re-
searchers. The two most significant of these chal-
lenges are the following:

Selection Bias: The probability of detecting a
gravitational wave event is not constant for ev-
ery event. Detector sensitivities introduce biases
in which events may be detected. These biases
must be accounted for, or statistical methods
will return inaccurate results.

Noise: Gravitational wave data is heteroge-
neous, meaning there is noise involved that
requires advanced statistical methods to work
with.

Currently, many population inference methods em-
ploy the use of hierarchical Bayesian inference,
which allows us to analyze data that is both bi-
ased and heterogeneous. Inferring Cosmology and
AstRophysics with Observations of Gravitational
Waves (ICAROGW) [6] is a Python package devel-
oped to perform hierarchical Bayesian inference using
gravitational wave data produced by compact binary
coalescences (CBCs). More specifically, ICAROGW
allows us to produce a value of the hierarchical like-
lihood for a CBC dataset. To do this, [CAROGW
requires three user inputs:

1. A set of posterior samples from true gravita-
tional wave observations.



2. A set of injections (simulated data) to evaluate
selection biases.

3. A model for parameter distribution, also known
as a rate.

From Ref. [7], the hierarchical likelihood can be ex-
pressed as:

Nobs

dN
L{z}A) o e Nexo @) H Tobs/ﬁ(xiw,A)de
i=1

where {2} is the set of data, x; are individual data
points, 6 is the source parameters, A is the hyper-
parameters, T, is the observation time, Ny is the
number of observed GW events, Neyp, is the expected
number of GW events, and % is the event rate.

The two parameters of interest for this study are
a and §, which define angular sky position similarly
to the spherical coordinates ¢ and 6. They will be
discussed in section 3.

2.1 Single Event Likelihood

The right half of this expression is the rate inte-
gral of the single event likelihood. It is atypical to
know the actual closed form of this likelihood, and
instead we are provided with N ; parameter estima-
tion (PE) samples. By sampling from the set of pos-
terior data provided, it is possible to approximate the
likelihood integral. The posterior data are sampled
from p(Q)z;, A) x L(x;]0, A)mpr(f|A), meaning the
integral can be rearranged to be

dN p(0)z;, A) AN
/ Lty A) 275 (M) o / om0 dtas MY

1 dN
7B (0]A) dtdo (A) over

0 space, which can be estimated using

This is an expectation value of

Ns 5
1

Ns,i

1 dN
WPE(GM |A) dtdo

()

j=1 ]

where 7 represents the event in question and j is the
index for the posterior samples that are summed over.

It is typical to define a weight w; ; that is equivalent
to the expression within the summation, and so the
whole integral is typically written as

N i
dN 1 &
/ﬁ(xiw,A)m(A)dQ b > wi;

j=1

2.2 Expected Number of Events

We begin with the assumption that merger rate does
not depend on when the data is taken, only how long
the data was taken for. Then it is possible to write

dN

dtdf (A)do

Nexp(A) = Tops /pdet(ea A)
where pget is the probability of detecting a GW event
given its parameters and the underlying hyperparam-
eters. Unfortunately, detection probability is not an
easily accessible quantity, and so must be estimated.
This is done through the use of injections. Injections
are artificial data produced from some prior m,;(6).
ICAROGW takes Nget injections out of an overall
generated Ngen injections and, using the prior, esti-
mates

Naet
Tobs

Ngen “
gen T

1 dN
1 7Tinj(6‘j dtdf

Nexp(A) ~ ()|
J
Naet
Tobs
= — 5
Ngen Z; !

j=

once again defining a weight for the value within the
summation. Here, the index j indicates the detected
injections.

2.3 Putting it Together

We now have everything we need to write an expres-
sion for the hierarchical likelihood. It is as follows:

Nobs
G T | |
i=1

Ns 4
Tobs Wi
§ : 2,3
N —
Jj=1
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Figure 1: The logical structure of ICAROGW, lifted from Ref. [6]

However, it is much more common practice to work
with the logarithm of the likelihood, which also sim-
plifies this equation visually.

Ns 5
SPILE
j:l

(3)

Fig. 1 summarizes the overall structure of
ICAROGW. The PE posteriors and injections are
passed to the CBC rate model provided by the user,
which ICAROGW uses to calculate the two weights
defined in this section. The weights are then used in
calculation of the hierarchical likelihood.

Naet Nobs
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Tobs
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3 Angular Isotropy

As the number of detected gravitational wave events
grows, it becomes increasingly feasible to study the
parameters that characterize these events. The pa-
rameters of interest in this study simply define the
sky location of the merger events. They are defined
similarly (but not identically) to the typical ¢ and 6
of spherical coordinates.

Right Ascension, represented with the letter
«, is defined as the typical ¢ angle from spherical
coordinates, ranging from 0 to 27 radians.

Declination, written as 4, is similar to the typ-
ical 6 angle. However, the 0 angle is at the equa-
tor, 7 radians is at the north pole, and —3 ra-
dians is at the south pole. Together, these two
coordinates define a single point in the sky.

It is typical to refer to both angles together as €.

The simplest model of angular dependence is
isotropy, pictured in the top left of Fig. 2, un-
der which all sky positions are equally likely. In an
isotropic model,
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It seems quite logical that gravitational wave events
be distributed this way. After all, there is nothing
special about the Earth’s position in the universe, so
merger locations should be random. Yet, there may
be a case for some slight anisotropies, and studying
them can be beneficial for multiple reasons. Investi-
gation into isotropy can assist in:

Diso (Q) -

1. Studying clustering around galaxies and observ-
ing which types of galaxies are most likely to
contain events.

2. Detection of a kinematic dipole caused by the
Earth’s motion through the universe [5].



3. Probing new physics through detection of unex-
plained anisotropy.

3.1 The Dipole Model

The most basic of the anisotropic models is the
dipole, shown in the top right of Fig. 2. In a dipole
model, there is one direction of highest event produc-
tion, opposite from which is the direction of lowest
production. Mathematically, this can be expressed
as

dN N A

dT)(b’ Q) = E(l + b[A(92) - Qaip))
where 2 represents the two angular parameters, b is
the magnitude of the dipole, which is restricted to
between 0 and 1, # is the unit vector in the direc-
tion of the given angles, and Qdip is the unit vector
in the dipole direction. Notice that the domain re-
striction on b forces the production rate to remain
nonnegative. In practice, this is used as a probability
distribution function in the form

pan(QIA) = ia PO[AQ) - Qap]) (@)

and fed to ICAROGW. This model takes three pa-
rameters: the dipole magnitude b and the right as-
cension and declination angles defining the dipole di-
rection.

3.2 The Quadrupole Model

Unfortunately, models more complex than the dipole
are far more tedious to express algebraically. Because
we are representing a probability distribution on the
sphere, the most logically basis for these functions is
that of the spherical harmonics.

The typical spherical harmonics, represented as
Y, (0, ¢), are commonly found in quantum mechani-
cal fields. The [ typically corresponds to total orbital
angular momentum and m to z angular orbital mo-
mentum. There is contained within the formulation
for these functions the requirement that |m| < [. Be-
cause the spherical harmonics form a basis for func-
tions on the sphere, they are ideal for representing

arbitrary probability distributions on that same do-
main.

When [ = 0, there is only one term, a constant,
which for our purposes of probability normalization
is scaled to ﬁ. The | = 1 terms have already been
covered; together with the constant term they rep-
resent the dipole model. Therefore, the next step
is to approach the | = 2 terms, which make up the
quadrupole, shown in the bottom left of Fig. 2.

Because probability densities cannot have imagi-
nary parts, it is useful to consider the real spherical
harmonics, written as

V2(=1)mS[Y)™] itm <0
Y0 if m =0
V2(-1)™R[Y"] ifm >0

These functions behave similarly to the classic spher-
ical harmonics and still represent a basis for functions
on the sphere. However, they do not require complex
number calculations to handle.

We can now define an eight parameter model for
the quadrupole as

mm:

3

2 l

=0 m=-—1

where the bi™ are the distribution parameters and
b9 = 1. Recall that p(Q|A) must remain nonnegative,
which creates a complicated space of valid parameter
combinations.

Unlike the simple dipole model, there is no im-
mediately obvious metric for the magnitude of the
quadrupole, so we must devise some logical expres-
sion to occupy that role. The value used was

B, =3 [(b;l)? )+ (b2

Although this expression appears arbitrary, it has
some very useful properties:
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Figure 2: Some skymaps of different distributions, including simulated isotropic (top left), dipole (top
right), and quadrupole (bottom left) models. Bright pixels represent regions of high production, dark pixels
represent low production. In the bottom right is a sample of some real GW events.

e If all but one of the parameters are set to 0,
the value of b,,; scales with the magnitude of
the remaining parameter and is restricted to fall
between 0 and 1.

o If all the b3 values are set to 0, ban; reduces
down to the expression for the dipole magnitude
expressed in spherical harmonics.

It is worth mentioning that the parameters are mul-
tiplied by different values due to the manner in which
the spherical harmonics are normalized. For our ap-
plications, the functions must be normalized as prob-
ability distributions, while the harmonics are typi-
cally normalized for their inner products.

Priors and Parameter Space

Unlike the dipole model, the quadrupole model does
not, possess a simple method to integrate a measure
of magnitude within the model itself. Because of
this, a large proportion of the population parameter

combinations can produce negative probability val-
ues. While ICAROGW can handle these parameter
choices by simply associating with them a probability
of zero, it is computationally inefficient.

To examine the efficiency, we produce sets of pa-
rameters from uniform priors and test which combi-
nations return negative likelihoods. Ultimately, we
find that less than 1% of the prior combinations re-
sult in likelihoods above 0. The same procedure was
undertaken using Gaussian priors, and a much larger
proportion of of the prior draws (approximately 50%)
had valid likelihoods. Results are shown in Fig. 3 and
in Fig. 4. Notice that once cuts are applied, the re-
maining distributions are not identical between the
Gaussian and uniform priors.

However, when samplers were run using both the
uniform and gaussian priors, it was found that the
posterior distributions were almost identical as long
as the sampler had enough steps to converge, indi-
cating that while the Gaussian priors may be more
computationally efficient, they do not produce differ-
ent posterior results from the uniform priors. In other
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Figure 3: The simulated prior distributions of b,,; for both uniform and Gaussian priors with 100,000
prior draws. Each prior draw was analyzed by ICAROGW, and those with negative likelihood were cut.
Approximately 1% of the uniform draws remained compared to 50% of the Gaussian draws.
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Figure 4: Density plots of the two post-cut prior dis-
tributions.

words, the likelihood term dominates, and any con-
straints we set on the quadrupole coefficients come
from the data, not from the priors.

The only major difference observed between the
uniform and gaussian priors in regards to real CBC
merger events was in the Bayes factors they pro-
duced, which differed significantly. This, however,
is an indication in the failings of the Bayes factor in
this situation, as it is overly reliant on the priors and
can therefore be artificially inflated. For this reason,
it is not wise to use the Bayes factor in analysis of
the quadrupole model. A similar phenomenon was
observed in Ref. [4].

4 Bounds On Anisotropies

4.1 Dipole

The first portion of this project was dedicated to ex-
amining the relationship between quantity of data
and effectiveness of Bayesian inference in placing up-
per bounds on the dipole magnitude b. By perform-
ing the Bayesian analysis using an increasing number
of simulated data points Ng,, a relationship could
be established. By quantifying this relationship, we



can make predictions regarding the future of isotropy
testing in gravitational wave astronomy.

Recall that ICAROGW requires three inputs to
calculate a likelihood: posterior parameter estima-
tion samples, injections, and a rate model. The pro-
cess for working with these is outlined in Fig. 5.
Both the PE samples and software injections were
simulated isotropically, and the dipole rate model was
used. Once ICAROGW calculated the likelihood, it
was inserted into a 10,000 step MCMC sampler along
with a set of priors, generating a posterior distribu-
tion for each of the three parameters. The upper
bound for the dipole coefficient b was chosen such
that 95% of the posterior distribution was below it.
Importantly, the b prior was a logarithmic uniform
prior between 107% and 1. The choice of bounds for
this prior affects where the 95% point is, so it is im-
portant to standardize.

It is worth mentioning that this procedure makes
one major simplification of sky position data. Typical
CBC merger event data contains a range of possible
locations rather than one localized point. The simu-
lations we perform produce GW events with a precise
location, meaning the analysis has more information
than would normally be provided by the same num-
ber of true CBC merger data sets. Regardless, we
believe that this distinction will have only a minor
impact, and that the procedure outlined here serves
as a satisfactory proxy through which to simulate up-
per bounds.

Plotting log b on a logarithmic scale for Ny, as in
Fig. 6 displays a clear negative trend, indicating that
the upper bounds that can be set do indeed decrease
with additional samples. Fitting linearly, we arrive at
a slope of —0.480(77), which agrees nicely with the
expected slope of —0.5 according to a proportionality

of \/z\}i outside of the logarithm.

Real Data

For this analysis, CBC merger events with false alarm
rates (FAR) of < 1yr~! were used as recommended by
Ref. [3] as posterior PE samples. There are 74 such
events. Injections were sourced from O3 search sen-
sitivity estimates, released alongside Ref. [3], which
inserted fake GW data into real background noise

Import a set of detectable
signals
Priors for
parameters

Feed into a sampler and
obtain posterior distribution

Reweigh the signals
isotropically

Generate Generate PE
injections from samples from
reweighed reweighed
signals signals

Use ICAROGW to obtain
likelihood
Calculate 95% point

Figure 5: Procedure for calculated upper bounds us-
ing simulated data.

and sent the signals through the usual data analy-
sis pipeline. Using these posteriors and injections we
can set an upper bound on b in the same fashion as
the simulated data. The resulting upper bound is
Inb, = —0.82, which agrees with the linear expec-
tation of —0.61 for 74 samples we derived from the
simulated data to within 1o of a typical data point.

We can also calculate the Bayes factor between the
dipole and isotropic models. This value is Bfﬁ% =
1.12. A value of 1 would indicate that the models are
equally supported by the data, while a value above
one favors isotropy. Although this result displays a
slight preference for isotropy, Bidsi% is so close to 1 that

the models are still essentially equal.

At first, this result may be discouraging. However,
it is exactly what we expected before any analysis
was performed. The current catalog of gravitational
wave events is simply not extensive enough to effec-
tively limit anisotropies. As the size of the catalog
increases, the same framework discussed in this pa-
per will be able to determine which model better de-
scribes the distribution of mergers. Fig. 6 marks
the number of merger events we expect to measure
through different run periods. In the LVK O4 and
O5 periods [1], we expect to detect up to 5,000 GW
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Figure 6: The simulated relationship between number of posterior samples available in Bayesian inference
and the 95% upper bound on the value of b. Uncertainty is standard (.23) and is the standard deviation
from 10 repeated simulations on a single point. The linear fit is log(b) = 0.29 — 0.480 log(Nsim). The blue
star is the upper bound derived from the currently available gravitational wave events.

events. Past that, we expect Cosmic Explorer (CE)
and Einstein Telescope (ET) [2] to increase further
the size of the merger catalog.

4.2 Quadrupole

As with the dipole model, we simulated the effect that
an increasing number of data samples would have on
the ability to place upper bounds on the magnitude
bani- Unlike the dipole model, however, we could not
place a logarithmically uniform prior on the measure
of magnitude and calculate the 95% point when it
drops off. Because of this, it was necessary to find an
alternate metric for the upper bound, defined in Eq.
6.

It was observed that the posterior distribution for
log bani (produced by using the posterior distributions
of the parameters) was largely symmetrical, with a
peak in the middle. Additionally, as the number of
samples increased, this peak occurred at lower val-
ues of logb,,;. Note that this peak does not truly
indicate a ‘correct’ value of logba,y;, it merely mea-
sures the simulated data’s ability to overcome the

prior distribution for the parameters, which produce
a prior for the magnitude that is not logarithmically
uniform as the dipole magnitude’s was. Therefore, we
observe that as the amount of data increases, the dis-
tribution’s peak approaches 0, as the simulated data
follows an isotropic distribution.

It is then this peak that we use as a measure of the
upper bound. Because the posteriors of logb,,; are
symmetrical, it is convenient to calculate the peak as
the mean of the distribution.

Ultimately, we used uniform priors on each of
the distribution parameters, and due to computation
time concerns, only 1,000 steps of the Markov chain
Monte Carlo sampler were performed. Still, a very
compelling linear relationship, as seen in Fig. 7, could
be established with a slope of —0.436(23), which is
within 3o of the expected —0.5. Additionally, the up-
per bound derived from the currently available GW
data sets agrees with expectation derived from the
linear relation to within 1o, so we may be convinced
that this metric and methodology produce adequate
results.
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5 Discussion

We have leveraged the Bayesian inference package
ICAROGW to analyze the statistical behavior of an-
gular distributions of CBC merger events. Using
isotropically simulated events, we established a re-
lationship between the number of simulated events
and the upper bounds placed on the magnitude met-
ric for both the dipole and quadrupole models. This
relationship was found to be b, \/Nle for both
models, which aligned with expectations.

Additionally, real GW data from the LVK collabo-
rations was used to calculate an upper bound for both
magnitude metrics. These values agreed within error
with the relationship established using the simulated
samples.

The primary achievement of this study has been
to develop reliable metrics through which to quan-
tify upper bounds on dipole and quadrupole models
as well as processes to calculate these upper bounds.
As the volume of CBC merger data increases, the
upper bounds that can be set using available data
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should follow the relationships established in this pa-
per. Significant deviation from these trends could be
an indication of anisotropies.
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