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1 Abstract

In this study, we investigate a method for accurately measuring the complex
reflectivity of an optical cavity using heterodyne interferometry. Our approach
focuses on the distribution of measurement points on the complex plane to op-
timize the precision and accuracy of cavity characterization. We demonstrate
the limitations of equally spaced frequency points, which result in uneven data
density across critical regions such as resonance. To address this, we employ
a non-equally spaced frequency sampling technique that ensures a uniform dis-
tribution of points on the complex plane, particularly around the free spectral
range (FSR). This method provides a more precise analysis of the cavity’s
complex reflectivity, transmissivity, and optical losses.

1



2 Introduction

Heterodyne interferometry uses a probe field’s phase and amplitude to char-
acterize the optical cavity’s complex reflectivity. Optical cavities are used in
gravitational wave detection, dark matter candidate searches, vacuum magnetic
birefringence detection, and precision tests of quantum geometry at the Plank
scale. Heterodyne interferometry can be used to characterize these cavities in-
dependently of the calibration of the photodetectors. This occurs when a probe
and local oscillator fields are injected into the cavity at opposite mirrors.

In a Fabry-Perot cavity with two mirrors, M1 and M2, with reflection and
transmission coe�cients r1 and t1, and r2 and t2. Then, for each mirror, the
reflectivity R, transmissivity T , and excess optical losses L, can be represented
in terms of power.

Figure 1: Schematic of a Fabry-Perot optical cavity with two mirrors, M1 and
M2, illustrating the electric fields involved in characterizing the cavity’s re-
flectivity and transmissivity using heterodyne interferometry. Here, Ein is the
incident electric field, Erefl is the reflected electric field, Eprompt is the prompt
reflection, Eleakage is the leakage field through the input mirror, Ecav is the cir-
culating field inside the cavity, and Etrans is the transmitted electric field. The
reflection and transmission coe�cients for mirrors M1 and M2 are r1, t1 and r2,
t2, respectively.

R1,2 = |r1,2|2 (1)

T1,2 = |t1,2|2 (2)

So by the conservation of energy

R+ T + L = 1 (3)

Understanding the phase di↵erence between the incident and reflected elec-
tric fields in a Fabry-Perot optical cavity is essential for characterizing the cav-
ity’s behavior. Figure 2 illustrates how the phase di↵erence between Erefl and
Ein can be graphically represented.
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Figure 2: Phase relationships in an optical cavity: The phase di↵erence ↵ the
field inside the cavity of the Erefl and the incident electric field Ein in a Fabry-
Perot cavity, the o↵set compounds each trip the light makes through the cavity.

Figure 3: The convergence of the vectors illustrates the stabilization of the phase
di↵erence, which is crucial for determining the cavity’s complex reflectivity.
Convergence in this context refers to the sum of the (decreasingly sized) vectors.
This stability is essential for accurately characterizing the cavity’s behavior,
including its reflectivity and transmissivity.

The circle traced out by the the cavity complex field for a given round trip
phase detuning alpha of various phase di↵erences can be drawn in the complex
plane. This circle can be represented by the equation for complex reflectivity,
derived from when perfect mode matching is achieved. This occurs when the
incident light’s spatial profile matches the cavity’s eigenmodes. With perfect
mode matching between the input field and the cavity, the reflected field is
the reflected input field, r1Ei, and the field leeks through the input mirror,
t1r2e

ikl
Ecav. The field can be understood to be

Eref = r1Ei � t1r2e
ikl

Ecav (4)

Where Ei is the monochromatic laser field coupled into the cavity by M1. And
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Figure 4: Intra-cavity Field Vectors: The phase di↵erence �it at various degrees
(42°, 3°, -1°, -44°) showing the trajectories of intra-cavity field vectors in the
complex plane. As � changes a circle in the complex plane is traced out.

Ecav = t1Ei/(1 � r1r2e
ikl). The Cavity is on resonance and has its maximum

circulating field when kl is an integer multiple of 2⇡, which happens when the
round-trip optical path length of the cavity is an integer multiple of �.

The transmitter leakage is a phase shift of ⇡ from the reflected field. So the
Eref becomes

Eref = Ei(r1 � t1r2e
ikl

/(1� r1r2e
ikl)) (5)

The cavity complex reflectivity, R, is the ratio of the reflected and incident
fields; with a high-fineness cavity near resonance, it can be approximated as

R(�⌫) = Eref/Ei ⇡ 1� T1/(A/2� i�⌫/f0) (6)

Where A = T1 + L1 + T2 + L2 is the total attenuation of the circulating
power during a single cavity round-trip, �⌫ is the frequency di↵erence between
the input laser field and the nearest cavity resonance, and f0 is the cavity-free
spectral range. (Spector and Kozlowski, 2024)

These two equations can be represented on the complex plane. As the fre-
quency di↵erence between the lase and the cavity resonance �⌫ is scanned, a
circle is formed in the complex plane. Here, the circle’s diameter ratio to the
distance from the origin to its future point is 2T1/A (Spector and Kozlowski,
2024). Scanning the input field frequency relative to the cavity resonance allows
the arc of the circle traced out to be measured, as can A, T1, and FSR.

Heterodyne interferometry is used to measure this complex reflectivity. This
is done by coupling a local oscillator (LO) laser into the cavity and then inter-
fering with the probe field in reflection with the LO in transmission. When this
is done, only the portion of the probe field’s light, which is in the spatial mode
of the cavity, contributes to the beat-note amplitude and phase. (Spector and
Kozlowski, 2024)

Prior use of this technique employed equally spaced frequency points. When
these points are graphed in the complex plane, it results in a higher density
of points at the ends of the frequency range and fewer points around the free
spectral range (FSR). This uneven distribution can be problematic because it
leads to insu�cient data around critical regions such as the resonance, where
more detailed information is crucial for accurate analysis.
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Figure 5: Illustration of the field reflected on the complex plain. As the fre-
quency �⌫ is sweeping, the R(�⌫) traces out this circle, where the diameter
b/(a + b) can be used to find 2T1/A. The blue section is the frequency within
the cavity with, and a+ b gives the amplitude of the input field Ei

(Spector and Kozlowski, 2024)

Figure 6: This is a Schematic Layout of the Experiment, where Laser 1 serves as
the resonant local oscillator and Laser 2 generates the probe field, which gives
the cavity complex reflectivity from the side of Laser 2 and, therefore, T2. To
get the T1, the control loops are switched. Spector and Kozlowski, 2024

Using equally spaced frequency points means the spacing between each mea-
sured frequency is constant. While this approach can simplify data collection,
it fails to account for the non-linear response around the resonance frequency.
In the complex plane plot, this manifests as a clustering of points near the ex-
tremities of the range and sparse coverage near the resonance. Such an uneven
distribution can lead to less accurately representing the resonance character-
istics. By analyzing the complex reflectivity, we can infer the transmissivity
and optical losses, providing a comprehensive understanding of the material’s
interaction with light. This understanding is crucial for optimizing material
performance in optical applications, where precise control over reflectivity and
transmission can significantly improve device e�ciency and functionality.

This paper is structured as follows: Section 2 outlines the experimental
setup and methodologies used for measuring the refractive index and extinc-
tion coe�cient across the specified spectral range. Section 3 presents the data
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Figure 7: Frequency Response Analysis Using Equally Spaced Frequency Points
This image illustrates the results of a frequency response analysis where the
measurement points were equally spaced apart in frequency. The diagrams
showcase: Power vs. Frequency Plot (Top Left): This plot displays the signal’s
power as a function of frequency, with a distinct dip at the cavity’s resonance
frequency. Phase vs. Frequency Plot (Bottom Left): This plot shows the sig-
nal’s shift across the same frequency range, highlighting the phase transition at
resonance. Complex Plane Plot (Right): Plots the real and imaginary parts of
the signal in the complex plane, demonstrating the distribution of points around
the resonance.

analysis techniques employed to derive complex reflectivity from the measured
parameters. Section 4 discusses the results, focusing on the relationship be-
tween complex reflectivity, transmissivity, and optical losses. Finally, Section 5
concludes the paper by summarizing the key findings and their implications for
developing and optimizing optical materials.

3 Procedure

3.1 The Cavity

The 19-meter-long cavity used to run this experiment used a 50.8mm diame-
ter with a radius of curvature of 19.95m mirrors from LaserOptik GmbH. They
were coated with alternating silica/tantalum dielectric layers deposited on a pol-
ished fused silica substrate. The mirror mount is controlled via piezo actuators,
allowing for adjustments under vacuum. (Spector and Kozlowski, 2024)

A free spectral range (FSR) of 7.89160 ± 0.00001MHz was measured, giving
a single-pass optical path length of 18.99440 ± 0.00002 m.

3.2 Distribution of Points

Our study found that points distributed evenly along the frequency would not
be even in the complex plane. This challenge is similar to what Baity et al.
(2024) described in their work on optimizing the circle fit for resonant quality
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Figure 8: This graph shows the di↵erence between the frequencies being mea-
sured. It is the lowest and centered around the FSR, where the most data is
going to be taken.

measurements in superconducting resonators, where they developed equations
to find the frequency to measure such that the points in the complex plain were
equally distributed. Baity et al., 2024

We adopted the approach of Baity et al., utilizing their foundational equa-
tions as a basis for our analysis. However, to tailor their model for supercon-
ducting resonators to optical resistors, we put their equations in terms of our
known variables (Baity et al., 2024)

✓(f) = 2 arctan(2(FSR/FWHM)(1� f/FSR)) (7)

f(✓) = FSR� FWHM/2 ⇤ tan(⇥/2) (8)

We then set the frequency to ±500 FSR. This allowed us to create an array
of frequencies centered around the FSR, with most measurements taken close
to it.

3.3 Measurement Technique

A Moku Pro, made by Liquid Instruments Instruments, 2024, was used in multi-
instrument mode to string together two lock-in amplifiers and a laser lock box
to measure heterodyne cavity reflectivity.

Our experiment used the Pound-Drever-Hall (PDH) laser frequency stabi-
lization technique to precisely characterize an optical cavity. The process in-
volved two lasers: a resonant local oscillator (LO) laser, which was locked to the
cavity using PDH, and an auxiliary probe laser, whose frequency was scanned
over a cavity resonance.

The implementation of the PDH technique within this scheme involved sev-
eral steps. First, Laser 1 (LO) was locked to the cavity using PDH (Black, 2001).
This required modulating the phase of Laser 1 with an electro-optic modulator
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Figure 9: The connections of the Moku Pro in Multi-Instrument Mode
. The lock-in amplifier in slot one acts as a frequency response analyzer where
the list of frequencies is sent in. The laser lock box keeps the pound driver hall

lock.

(EOM) and detecting the reflected light from the cavity. The reflected signal
was mixed with the modulation signal to produce an error signal, which was
then used to give feedback to Laser 1’s frequency, locking it to the cavity res-
onance. Next, Laser 2 (Probe) was stabilized relative to Laser 1 through an
o↵set phase-locked loop (PLL), ensuring the probe laser remained o↵-resonance
during the measurement. This maintained PLL stability and preserved phase
information. Subsequently, Laser 2 was phase-modulated to generate sidebands,
with the upper sideband used as the probe. The frequency of this probe side-
band was then swept across a cavity resonance. Finally, the probe field reflected
from the cavity interfered with the LO field transmitted through the cavity in
a heterodyne detection setup. This ensured that only the portion of the probe
field spatially matched to the cavity’s fundamental mode contributed to the
beat note, whose amplitude and phase were measured as the probe frequency
was scanned (Spector and Kozlowski, 2024).

Figure 10: This diagram depicts the setup of the first lock-in amplifier configured
as a frequency response analyzer. Key components and their functions are
illustrated as follows: Local Oscillator: This generator generates the frequencies
that define the frequency of the probe field relative to resonance, resulting in
a complex reflectivity encoded in the amplitude and phase of the beat note.
Measurement Points (A and B): Points where the in-phase (I) and quadrature
(Q) signals are measured, providing crucial data on the cavity’s reflectivity.

The first Lock-in Amplifier, which worked as a Frequency Response Ana-
lyzer, scanned the frequency. The array of frequencies was fed into the locking
amplifier’s local oscillator, which gave the cavity its complex reflectivity, as it
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was encoded in the amplitude and phase of the beat note. The Q and I signals
were measured at points A and B in Figure 10. The get data function in the
Moku python API was used to collect 1024 points over one second; this was
then averaged to find the average Q and I signals for each frequency measured.

3.4 Data Processing

In our analysis, the processing of collected data involved several key steps, par-
ticularly fitting a circle to the measured Q and I data points and calculating the
residual sum of squares (RSS) to evaluate the fit quality. These steps are essen-
tial for accurately characterizing our system’s frequency response and ensuring
that our measurements are reliable and precise.

The initial data collection was performed by sweeping the frequency and
recording the corresponding I and Q signals. These signals were then used to
calculate the amplitude and phase of the response at each frequency point.

Amplitude =
p
I2 +Q2 (9)

Phase = arctan[Q/I] (10)

The collected data was unwrapped to ensure continuity in the phase mea-
surements, adjusted by subtracting the average phase to normalize the data.

We applied a circle-fitting algorithm to analyze the I and Q data. This
method is crucial for identifying the resonance characteristics in the complex
plane. The circle fitting was performed using the following linear algebra ap-
proach:

We set up the system of linear equations based on the geometric relationship
of the data points (xi, yi) to the circle’s center (cx, cy) and the radius R.

(xi � cx)
2 + (yi � cy)

2 = r
2 (11)

This can be rearranged into a linear form to facilitate the use of linear least
squares fitting

x
2
i + y

2
i = 2cxxi + 2cyyi + r

2 � c
2
x � c

2
y (12)

In matrix form, this can be written as:

2
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. . .

. . .

. . .
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y

3
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2
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2
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2
2

.

.

.

x
2
n + y

2
n

3

7777775
(13)

Solving this system using least squares gives the values of cx, cy, and r
2�c

2
x�c

2
y.

The radius r can then be calculated.
The residual sum of squares (RSS) is calculated to assess the fit’s quality.

This measures the di↵erence between the distances of the data points from the
fitted circle and the radius.
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RSS =
X

(
q

(xi � cx)2 + (yi � cy)2 � r)2 (14)

4 Results

Figure 11: This image presents the results of a frequency response analysis
where the measurement points were non-equally spaced in frequency but rather
equally spaced around the complex plane, specifically designed to provide denser
coverage around the resonance. The diagrams display: Power vs. Frequency
Plot (Top Left): This plot shows the signal’s power as a function of frequency,
with a clear dip at the cavity’s resonance frequency. Phase vs. Frequency
Plot (Bottom Left): This plot illustrates the signal’s phase shift across the
frequency range, highlighting the phase transition at resonance. Complex Plane
Plot (Right): This plot depicts the real and imaginary parts of the signal in
the complex plane, showing a more uniform distribution of points around the
resonance.

In the preceding analysis, we utilized equally spaced frequency points, re-
sulting in an uneven data distribution in the complex plane. We implemented a
non-equally spaced frequency sampling technique to address this issue, concen-
trating more points around the free spectral range (FSR) and resonance regions.

The results, as shown in the accompanying figure 11, demonstrate several
improvements: The power and phase plots now exhibit a more refined and
continuous transition at the resonance. The increased data density around the
critical regions ensures that the key features of the resonance are captured more
accurately. The complex plane plot displays a uniform distribution of points
around the resonance. This balanced coverage enhances the precision of the
frequency response characterization.
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Figure 12: Initial distribution of signal data points in the Q-I plane, including
the fitted circle and the calculated residual sum of squares (RSS) value. The
higher RSS indicates a less accurate fit, demonstrating the initial alignment and
spread of the data points around the circle.

Figure 13: After applying the proposed technique, the distribution of signal
data points in the Q-I plane was enhanced. The fitted circle shows a signifi-
cantly lower residual sum of squares (RSS) value, indicating an improved fit and
demonstrating the technique’s e↵ectiveness in refining data alignment.

To evaluate the performance of our signal processing technique, we analyzed
the distribution of data points in the Q-I plane (Quadrature and In-phase com-
ponents). The results are illustrated in Figures 12 and 13 . Figure 12 shows
the initial distribution of the signal data points, the fitted circle, and the cal-
culated residual sum of squares (RSS) value. Similarly, Figure 13 presents the
distribution after applying the improved technique.

The circle-fitting technique involves plotting the data points in the Q-I plane
and fitting a circle to these points. The RSS value determines the goodness of fit,
with a lower RSS indicating a better fit. The primary aim is to achieve a uniform
distribution of the data points around the fitted circle, which signifies a stable
and consistent signal representation. Initially, the RSS value was significantly
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higher, at 1.15e-8, indicating a less accurate fit. This is evident in the spread
and alignment of the data points with respect to the fitted circle. After applying
our refined technique, the RSS value was notably reduced to 5.26e-9, indicating
a much better fit. The data points aligned more closely with the fitted circle,
suggesting a more uniform distribution.

5 Discussion

The results of our study demonstrate that non-equally spaced frequency sam-
pling provides a significant advantage over equally spaced frequency points,
particularly in measuring the complex reflectivity of an optical cavity.

Concentrating more points around the resonance ensures the critical regions
are more densely sampled. This results in a more accurate and detailed repre-
sentation of the resonance characteristics in both the power and phase plots.

The significant reduction in the RSS value after applying the non-equally
spaced frequency sampling strategy indicates a better fit of the circle to the
data points. This improvement underscores the e↵ectiveness of the proposed
technique in refining the alignment of data points and enhancing measurement
accuracy.

A significant benefit of fitting a circle to the complex plane plot is that it
allows us to extract critical optical properties such as transmittance, losses, and
reflectivity. Equally spaced frequency points often result in uneven distribu-
tions in the complex plane, particularly at resonance frequencies. The inherent
non-linear response of optical cavities around resonance means that points con-
centrated at extremities provide limited insight into the cavity’s behavior near
resonance. This uneven distribution can lead to inaccuracies in characterizing
the cavity’s reflectivity and transmissivity, as critical resonance features may not
be captured adequately. The circle fit helps to accurately determine the complex
reflexivity, which lets us find the reflectivity, transmissivity, and optical losses.

The improved circle fit in the complex plane evidences the e↵ectiveness of our
method. Compared to equally spaced frequency measurements, our approach
reduced the residual sum of squares (RSS) and enhanced the accuracy of the
fitted circle. Overall, our findings highlight the importance of optimizing the
distribution of measurement points in frequency response analysis. The pro-
posed non-equally spaced frequency sampling strategy o↵ers a robust approach
for achieving more precise and reliable characterization of optical cavities.

6 Conclusion

The experiment successfully demonstrated the application of heterodyne inter-
ferometry in measuring the complex reflectivity of an optical cavity by evenly
distributing frequency measurement points in the complex plane. This approach
overcame the limitations of traditional equally spaced frequency measurements,
leading to improved data density around critical resonance regions and more
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accurate characterization of the cavity’s properties.
In the initial setup, the distribution of signal data points in the complex

plane exhibited noticeable deviations from the ideal circular pattern, reflecting
inaccuracies in our frequency response measurements. Figure 13 shows the data
points’ initial alignment and the fitted circle, with a relatively high residual
sum of squares (RSS) indicating a less accurate fit. However, after applying
the proposed non-equally spaced frequency sampling technique, the distribution
of data points in the complex plane was significantly enhanced. Figure 14 illus-
trates this improvement, with a fitted circle showing a substantially lower RSS

value. This indicates a much more accurate fit and demonstrates the technique’s
e↵ectiveness in refining data alignment and improving the overall precision of
the frequency response analysis.

We e↵ectively increased data density around the resonance by adopting a
method that ensures points are evenly distributed in the complex plane. This ap-
proach facilitated more accurate calculations of the complex reflectivity R(�⌫),
allowing us to better understand the optical cavity’s behavior. The evenly
spaced points provided a more balanced view of the cavity’s response, accu-
rately capturing the phase and amplitude variations.

The technique Baity et al. (2024) developed was instrumental in our analysis,
o↵ering a way to determine the frequency points needed for even distribution
in the complex plane. We adapted their equations to suit the context of optical
cavities, focusing on critical variables such as the free spectral range (FSR) and
full width at half maximum (FWHM). Our method centered around the FSR,
allowing for finer measurements near resonance, where the cavity’s behavior is
most sensitive. (Baity et al., 2024)

The comparison between the initial and enhanced distributions shows that
our optimized sampling strategy leads to more reliable and accurate measure-
ments, providing a robust basis for characterizing the optical cavity’s complex
reflectivity and transmissivity, successfully demonstrating an improved method
for characterizing the complex reflectivity of an optical cavity using heterodyne
interferometry. By adopting a non-equally spaced frequency sampling strategy,
we achieved a more uniform distribution of data points in the complex plane,
particularly around the resonance regions. This led to more accurate and reli-
able measurements, as evidenced by the reduced RSS values and enhanced data
alignment in the complex plane.

The next phase of this research will focus on refining the measurement pa-
rameters to further enhance the accuracy and reliability of our optical cav-
ity characterizations. Specifically, we will experiment with di↵erent sampling
densities around the resonance frequency and explore adaptive techniques that
dynamically adjust the frequency points based on initial measurements. This
optimization aims to reduce measurement time while maintaining or improving
the precision of the reflectivity and transmissivity calculations. Additionally, we
will conduct out-of-loop experiments to validate the accuracy of our complex
reflectivity measurements. This approach will use independent measurement
systems to assess and compare the cavity’s response with our current findings.
By ensuring consistency between in-loop and out-of-loop measurements, we can
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confirm the reliability of our method and identify potential sources of error or
bias in the current setup. We plan to extend our measurements over multiple
free spectral ranges (FSR) to comprehensively understand the cavity’s behavior.
This broader range will allow us to identify phase o↵sets potentially introduced
by physical wiring and other systematic errors. By analyzing the cavity’s re-
sponse across a more comprehensive frequency range, we can detect anomalies
and refine our setup to ensure accurate phase alignment and minimize external
influences on the measurements.

Our findings underscore the importance of optimizing frequency sampling
techniques in interferometric measurements, particularly when precise charac-
terization of optical cavities is required. The proposed approach can significantly
benefit various advanced applications, including gravitational wave detection,
dark matter searches, and high-resolution spectroscopy, where accurate cavity
characterization is crucial.
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