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Abstract

In this study, we explore the potential of diamagnetically levitated silica mirrors
for measuring the quantum limit in gravitational wave interferometry. Conventional
wire suspensions face limitations due to thermal noise at the 0.1 mg scale, making
them unsuitable for achieving the standard quantum limit (SQL) in position measure-
ment. Recent advances suggest that diamagnetic levitation could provide the neces-
sary isolation from noise to investigate quantum decoherence at macroscopic scales.
This research presents a simulation of a 3D magnetic field using a hybrid Finite El-
ement Method Magnetics (FEMM) and MATLAB program to assess the feasibility
of levitating highly reflective silica mirrors. The simulation results indicate that such
mirrors can indeed be levitated, with optimization of the magnet system configuration
identified. Additionally, an optical setup involving a piezoelectric feedback Michelson
interferometer was constructed to further evaluate noise mitigation and achieve precise
measurements. The experimental e↵orts and simulations are aligned with theoretical
expectations and o↵er a promising approach to reaching the SQL in gravitational wave
detection.

1 Introduction

There is a continued e↵ort in gravitational wave research to find test masses that are in-
sulated from noise. Furthermore, researchers in gravitational waves as well as other fields
where highly precise measurement is important have begun to explore the idea that there
might be some fundamental level of decoherence of quantum objects in the macroscopic
world called gravitational decoherence in addition to decoherence objects face in their en-
vironment. Recently, it has been proposed that diamagnetically levitated mirrors would be
best for insulating from common sources of noise to see this form of decoherence [5]. A cru-
cial requirement for such experiments is achieving the standard quantum limit for position
measurement sensitivity, which conventional wire suspensions cannot attain at the 0.1 mg
scale due to thermal noise [5]. Researchers in the past have succeeded in the experimental
verification to levitate unreflective 0.1-1 mg silica masses [5]. However, granted there is a
lot of theoretical merit in these findings, refined and highly reflective silica itself has not
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yet been levitated successfully. To further aid research e↵orts, tests on the levitation height
were simulated indicating that levitation of such mirrors is in fact possible using a hybrid
FFEM and MatLab program to simulate a 3D magnetic field and sum over the average force
experienced by a simulated silica mirrors with defined properties of density, permeability,
and susceptibility. An optical cage setup aligned to a piezo locked Michelson interferomenter
was also constructed and tested to mitigate noise from the mirrors in air.

2 Background

The primary objective for this project was to investigate the use of levitated silica mirrors
to observe the limits of quantum noise. Hence, it is only natural to start at the definition
of the quantum noise limit for unentangled or unsqueezed light, also known as the standard
quantum limit.

First, to define a key lemma, consider this elegant derivation of Heisenburg’s uncertainty
principle using basic quantum mechanics. We start by considering a normalized wavefunction
 (x) such that limx!±1  (x) = 0 and limx!±1  0(x) = 0. The expectation values of position
hxi and momentum hpi are given by
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In defining the wavefunction, we can always set  so that hxi = 0 and hpi = 0 since the
wavefunction and its derivative go to zero at infinity (this is demonstrable by integration by
parts and the use of the limit definition above). Hence, the uncertainties in position and
momentum are
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The term ax
�
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�
can be integrated by parts, along with the fact the wavefunction

must be normalized, to give
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Thus, we have
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where �x2 = hx2i and �p2 = hp2i.
We consider the quadratic equation in a:
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Solving for a, we find the discriminant must be non-negative,
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Thus, we have derived the generalized uncertainty principle �x�p � h̄
2 . If �x�p = h̄

2 , we
have by the definition of the integral
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= 0

This di↵erential equation can be solved to give

 (x) = Ce�
ax2

2

which corresponds to the ground state (zeroth order) of the quantum harmonic oscillator [3]

 (x) / e�
x2

2�2 eip0t/h̄

where � = 1p
a .

The reason for this rigor is because now we know that in order for a test mass to minimize
its uncertainty in position as much as possible, assuming the position and momentum of itself
are not entangled in some way, then it must obey the properties of the zeroth order quan-
tum harmonic oscillator. The position operator of the test mass assuming it is a quantum
harmonic oscillator can be written using raising and lowering operators [3] as follows

x̂ =

r
h̄

2m!
(a+ a†)

where a and a† are the annihilation and creation operators, respectively, h̄ is the reduced
Planck’s constant, m is the mass of the particle, and ! is the angular frequency of the
oscillator.
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Using the properties of the raising and lowering operators [3], the zero point fluctuation
(�xzpf ) or the minimum uncertainty in position that the silica mirror can have can be derived
as follows
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From here, assume the measurement time is given as ⌧ ⇡ 1
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Therefore, we have
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This is the Standard Quantum Limit (SQL) of position. In a Michelson interferometer,
the e↵ective mass is considered as m

4 since the di↵erential motion involves four mirrors.
Additionally, we divide by L2 (where L is the arm length) and take the square root to

express the sensitivity in terms of strain. This leads to S1/2
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1
2⇡fL

q
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also derive this using the definitions of shot noise and radiation pressure [4]. This is because
radiation pressure and shot noise are directly analogous to uncertainties from noise in position
and momentum in the light itself hitting the mirror. The maximum allowable shot noise and
radiation pressure are set equal to each other and the minimum noise is where they intersect,
exactly at the SQL. This is the reason we are interested in diamagnetic mirrors. They are
insulated from all noise in a theoretical perfect vacuum and potentially allow us to look at
this noise directly, even having the ability to reach below the SQL using squeezed light.

Now that the basic objective of using silica mirrors is well defined, looking macroscopi-
cally, the basic idea behind implementation of diamagnetic levitation of a mirror test mass
using classical magnetostatics for an assumed linearly magnetic silica is described as below
[1, 2].

M = �H

B = µ0(H+M) = µ0(1 + �)H = µH assuming linear magnetic media

M =
m

V
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µ
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µ
V

F = r(m · B) (for further derivation, see [2])

U = �m · B

dU = �dm · B +�dB ·m = �dm · B
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because the magnetic field does not change in a certain region, only the dipole.
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Equation 1 was used to check the conditions of the levitated mass for the program and find
the levitation height of the mass over the magnet array at any x-y coordinate. Similarly,
equation 2 was used to plot the horizontal forces of the mass, given it was at the stable
levitation height determined by equation 1. The results of the simulation informed of the
most optimal configurations of the system for levitation.

3 Methods: Program

This simulation was designed to mirror the physical apparatus used in our experiments by
matching the geometry of the NdFeB magnet array and the levitated mirrors. By simulating
the magnetic field distribution, the resulting forces, and the stability of the levitated mirror,
we were able to estimate the variables of interest such as Q factor and levitation height while
making necessary tweaks to the geometry of the system when necessary. Previous iterations
of the code existed which analysed line segments of the magnets in 2D space – this idea
was further developed by mapping the data in 3D space to more accurately represent the
physical levitation setup as detailed below. The script uses a software called Finite Element
Method Magnetics (FEMM) model, to simulate a setup for one ring, made of NdFeB with
a strong magnetic field fixed inward toward the center (in real life made up of 8 strong,
triangular magnets), surrounding an iron rod, as shown in Figure 1 below. The silica test
mass attempted to be used was 0.6 mm tall with a diameter of 1.5mm. A test mass of similar
size with a diameter of 1.5mm was also tested but was cut into a hemisphere with radius
0.75mm.
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Figure 1: Diagram of Simulated Magnetic Array and Silica Test Mass

The script first defines dimensions for the simulation, such as the size of the air gap
between the magnet and the iron rod, the thickness of the ring, and the material properties
of both the silica and the magnets. It also initializes the geometry of the silica test mass
and the magnet arrangement, setting up a detailed spatial model of the system centred
around the z-axis to provide an accurate 3D description of the system. The magnets and
the surrounding air regions are drawn and labelled within FEMM, as shown in Figure 2, and
their properties are defined such as the ring magnet specifying a fixed magnetic field toward
the center and the iron rod being made of pure iron. The simulation mesh is produced and
analyzed to calculate the magnetic field components (Br and Bz) at various points within
the defined 2D space. These magnetic field data are then converted from a 2D axisymmetric
model to a 3D cylindrical vector field by extending the 2D field data along the variable ‘✓’
direction, assuming rotational symmetry around the central axis as mentioned previously.
Furthermore, the process of interpolating 2D points grid into a 3D grid that is axisymmetric
limits computational e�ciency heavily. The points created after the rotation must be equally
spaced in order to be operated on e↵ectively in a 3D Cartesian grid which takes time.

6



Figure 2: Simulated Magnetic Array Cross Section in 2D in FEMM

As shown in Fig 2, the 3D ring geometry is not explicitly defined in the 2D model as the
initial calculation is to obtain the magnetic force vectors. The program then interpolates
the magnetic field data onto a 3D grid and calculates the force components acting on the
silica due to the magnetic field gradients. These calculations derive the average horizontal
and vertical forces experienced by the silica mass. The script then verifies if the magnetic
levitation force matches the gravitational force on the silica within a specified error margin
(0.05e-5) according to Equation 1, ensuring that levitation conditions described previously
are maintained. This is done by iterating through the z direction and calculating the dif-
ference between the gravitational force acting on the silica and the vertical force component
due to magnetic field gradients (Fbz). The levitation height is incrementally adjusted until
the di↵erence meets a specified error threshold for the di↵erence between the forces (0.05e-
5) which ensures equilibrium. This process is by far the most computationally expensive
segment of the program and imposes a hard limit on its accuracy by introducing a margin
of error. The resulting matrix stores the calculated levitation heights across the 2D plane
which is then plotted to provide a visual representation of levitation height. This is shown in
Figure 3 with the results for levitation height of the system described in Figure 1 with a 1.2
mm distance between the iron plate, as was successful when researchers were first attempting
to levitate silica [5].
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Figure 3: Diagram of Simulated Magnetic Array and Silica Test Mass

In practice, this program is used to determine the e↵ectiveness of the system of magnets
to levitate silica; if the levitation height is found to be insu�cient or 0, changes can be
made to the physical system of magnets to increase levitation height. At a reasonably low
margin of error, the simulation states that macroscopic silica masses of up to 0.1g should
passively levitate on the system of magnets constructed in the lab. As is shown in Figure 3,
the current setup simulated seems su�cient enough to levitate the theoretical test mass at
least 1.2mm.

4 Methods: Apparatus

In order to investigate the noise e↵ects of levitating a silica test mass, a Michelson inter-
ferometer with a piezoelectric driver feedback was constructed to hook up to the magnetic
array described in the previous section levitating a silica mass inside a vacuum. Several
pieces of optical equipment from ThorLabs were ordered and assembled in order to cause a
laser beam to focus vertically into the chamber as one arm of the interferometer, as shown
in the figure below.
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(a) Sketch of Cage Mount for Optics around Vacuum
Chamber

(b) Testing the Mount Outside the Vacuum Chamber
to Align to the Piezoelectric Driver Glued to a Mirror
(Attached on Gold Stand in Back) with a HeNe Laser

Figure 4: Setting Up the Vacuum Chamber Arm

The oscillations of the silica mirror should be isolated from movements of the other
optical components as much as possible using a piezoelectric crystal attached to a mirror.
Furthermore, the theory behind using a piezoelectric driver locked Michelson interferometer
should be discussed in detail.
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Figure 5: Simplified Diagram of Piezoelectric Feedback Loop

The general idea is as in the figure above. The interferometer gives an output signal at
some fringe, say the mid-fringe, at a certain intensity that gives a certain o↵set in voltage
from the photo-detector. This gets fed into a di↵erential amplifier (signified by the plus and
amplifier in the diagram) with an o↵set set to the same voltage that the mid-fringe from the
interferometer gives. In this way, if the two signals are always the same, no voltage will be
fed to the piezo and nothing happens. However, if there is a di↵erence in the light recieved
at the photodetector, the di↵erential amplifier will give a non-zero di↵erence between the
output signal and the o↵set and the piezo will be driven until that di↵erence is minimized.
In this way, it is a feedback loop designed to minimize the variation in the mirrors outside
the vacuum chamber [6].

In alignment as well, this setup of the piezoelectric driver also proved useful. If one
drives a high voltage periodic signal through the piezoelectric crystal, one can clearly see
oscillations in the fringe patterns, as shown in the figure below, if the system is aligned
correctly.

Figure 6: Oscillations in the Fringes of the Michelson Interferometer (Yellow) given an
Amplified Periodic Triangular Signal from Function Generator (Green)

In addition to this process of setting up the interferometer, levitation of the silica test
mass was attempted.
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(a) Silica Mass Seemingly Levitating in the Magnetic
Array

(b) Picking Up and Placing Silica Test Mass with Bam-
boo Tweezers

Figure 7: Levitating the Silica Test Mass

We attempted to levitate the silica test mass and align it to the interferometer. It could

11



have been successful but we lacked the tools to properly see the silica under the iron plate
and adjust it precisely. For the most part, we used wooden tools, since silica and other
levitated masses, can acquire noise from static. Hence, we deionized the silica test masses
before every attempt at levitation by holding it with tweezers over a deionizing fan. Slightly
changing the heights of the iron plate and iron rod in the code seemed to cause better results
in simulation and while testing the system, but we lacked the precision needed to be certain.

5 Conclusion

In this research, we have successfully constructed a piezoelectric driver for a Michelson
interferometer and a simulation to inform whether the test masses were able to levitate and
at what heights. Furthermore, we identified several potential problems with the levitation
setup. Trial and error was used several times in adjustment of the magnetic array to levitate
the silica and by the end of the two month period, we had surmised a configuration that
seemed promising for future researchers to tweak more finely.

6 Future Work

Several suggestions have been made to improve specifically the levitation setup before accu-
rate measurement of Q could be taken in the vacuum chamber. The most obvious, because
the levitation height given our code was only at most 1mm, which is relatively di�cult to
see, is to use stronger magnets. We had been using N40 NdFeB magnets when there existed
N52 magnets of stronger field that we were unaware of. Furthermore, the configuration of
the triangular magnets were sliding past each other due to the air gap and not pointing di-
rectly toward the center, similar to the shape of an aperture, and we believe this was causing
a circular field in real life around the iron rod which caused the silica mass to be forced
outward from the center instead of inward. We attempted to adjust this through trial and
error and observed much greater levitation heights.
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