Sifting Through the Noise: Finding the Stochastic Gravitational Wave
Background from Virgo

Marie Olivia Sykes

Ursinus College

Giancarlo Cella
INFN-Pisa

(Virgo Collaboration)
(Dated: 7 August 2023)

The primordial section of the Stochastic Gravitational Wave Background has the possibility of
being detected within the kilohertz detection band when taking into account redshift from Inflation-
ary effects. Even still, sensitivity and noise levels on detectors like the Virgo Interferometer limit
the ability to perceive this. Using Kurtosis as a part of Independent Component Analysis when
analyzing the detection readings as well as other channels, Gaussian sources of noise can be limited

and discarded.

I. INTRODUCTION

Gravitational waves were first predicted by
Einstein in 1916 as an implication of General
Relativity occurring when two massive objects
interact with each other [I]. Major detections
typically consist of two objects, such as black
hole and/or neutron star interactions, including
collisions and mergers. These interactions cause
ripples across the fabric of space-time that are
large enough to be detected [2].

The first attempt to detect gravitational
waves was the Weber Bar, which published re-
sults in 1969 though the results were never cor-
roborated [3]. Research first began proposing
interferometers with arms in the kilometer-scale
in the 1970s and LIGO first opened in 1999 be-
fore later joining LIGO-Virgo in 2007 [4]. KA-
GRA, a Japanese gravitational wave detector
collaboration, joined LIGO-Virgo and created
LIGO-Virgo-KAGRA (LVK) in October 2019.
[5].

In 2015, the first gravitational wave was de-
tected by LIGO-Virgo, proving Einstein’s the-
ory nearly one hundred years later [4]. Grav-
itational waves provide an alternate source of
information that studies relying on electromag-
netic radiation or subatomic particles cannot
provide. They barely interact with matter al-
lowing them to be relatively unaffected by their

path across the universe, and eminate from var-
ious sources. Some sources, such as a binary
black hole merger, would otherwise be unde-
tectable [6]. Electromagnetic counterparts to
gravitational wave detection have been sought,
but as the detectors cannot determine a small
enough area of the sky to search for a possible
pairing, nothing has been proven so far.

A. Virgo Interferometer

FIG. 1: An aerial view of the Virgo
Interferometer. Credit to Nicola
Baldocchi/EGO

The Virgo Interferometer is located at
the European Gravitational Observatory in

Cascina, Italy, just outside of Pisa in the mid-
dle of farmland.The interferometer first began
construction in 1997 and began observations
in 2007, forming LIGO-Virgo. The Advanced
Virgo upgrade was completed in 2017 and made
its first detection in August 2017, two into the
second LIGO-Virgo observing run. The inter-
ferometer consists of two three kilometer arms
pointed north and west. The blue tunnels seen
in the figure, painted the colour so they do not
disturb the landscape, encases a smaller tunnel
and serves as a protective barrier [7]. The de-
tector is sensitive to waves between a few Hertz
well into the thousands of kilohertz range (kHz)
18].
After the laser is produced at the square
building between the two tunnels, it is split by
the beam-splitter, and the light travels down
both tunnels until it reaches a mirror held at the
end where it returns to the center. The return
beams then interact and cause an interference
pattern. In theory, if there is no detection, the
lasers should take an equal amount of time to
return and cancel out. If there is a detection,
the space the laser travels is stretched and the
return time is altered. Since there is noise that
interferes with the laser’s pattern, this is not
exactly how it plays out [7].

The detector reading composed of the differ-
ence in the input and output channels can be
described as

where time is the lower index i, h; represents
the detection signal, and n; represents the noise
interference.

As the interferometer detections are com-
posed of noise, to tell whether or not a grav-
itational wave has arrived, the signal must be
stronger than the noise or one has to be able to
reduce the noise in the system. In order to im-
prove the detections of any type of gravitational
wave, reducing the noise is essential.

Over the summer, I became a Virgo col-
laborator and attended the summer’s quar-
terly meeting. Virgo Week consisted of re-
ports from the various committees and analysis
groups, research updates, and communications

End mirror
Input
Mode
Cleaner
Input mirror
3km
Beamsplitter
Laser H D D
Power
recycling
mirror

LS A
Signal i

recycling H
mirror i Quantum noise
i reduction system
rrrrrrrrrrrrrr oo

G
Detection i

photodiode ®

FIG. 2: A diagram of the Virgo Interferometer.

from the Virgo Early Career Scientists (VECS)
group. One night VECS organized a social din-
ner for the attendees. VECS included in their
announcements the Women of Virgo Project,
an outreach and visibility project interviewing
women about their work in science, and I vol-
unteered to be an interviewee and interviewer
for their project. These interviews are hosted
on the LIGO-Virgo Instagram in the form of
reels and posts. This week allowed me to see
how collaborations work on such a large scale,
pulling various research groups and specialities
together to pursue a common goal. One in-
teresting thing a researcher there told me was
that there were flowers growing on the field be-
tween the arms but they had to cut them down
because the wind passing through their leaves
caused too much noise, which is also why there
aren’t any trees in the clearing around Virgo.

The LIGO-Virgo-KAGRA Observing Run 4
began in May 2023. KAGRA observed for the
first few weeks of O4, though Virgo has yet to
join. Virgo aims to join O4 later this year af-
ter initially not joining due to a faulty mirror.
The detector is being calibrated with hopes of
achieving O3 sensitivity.

B. Stochastic Gravitational Wave
Background

The Stochastic Gravitational Wave Back-
ground (SGWB) is composed of various sources
of gravitational waves across a variety of wave-
lengths, such as the ongoing ripples produced by
the beginning of compact binary interactions as
well as primordial gravitational waves, the lat-
ter half of which has yet to be seen. If detected,
they could provide insight further into the early
universe than otherwise seen [2]. Some studies
predict the primordial sector to exist somewhere
above 107'% though others predict that they
may be detectable by LVK when accounting for
redshift. Primordial waves could be detectable
at wavelengths of up to 100 Hertz [9-11].

In June 2023, the SGWB was shown to have
strong evidence for elements existing within the
nanoHertz range with origins from supermas-
sive black hole collisions from galaxy merg-
ers after the International Pulsar Timing Ar-
ray (IPTA) coordinated to arrange a release
of their fifteen year datasets. The NANOGrav
dataset strongly suggests evidence up to 3o for
the gravitational-wave background. Their re-
port analyzed signals from 67 pulsars using a
power-law spectrum and a Bayes factor over
10, As the power law posterior seen in their
Figure la does not quite fit to their observa-
tions, this could indicate that there might be
something else, such as primordial waves, along-
side the waves from compact binary systems
[12].

Traditionally the stochastic gravitational
wave background searched for using a mixture
of Bayesian statistics but a filter must be used
to separate the astrophysical foreground where
compact binaries, such as what the IPTA has
detected, obscure the much smaller primordial
waves. In a 2020 report, one team developed
a method to filter out this larger non-Gaussian
foreground while keeping the stochastic back-
ground [9].

II. METHODS

To eliminate Gaussian sources of noise, In-
dependent Component Analysis (ICA) was em-
ployed using Kurtosis statistical analysis. This
methodology can be employed to find linear de-
pendency between different channels of infor-
mation, both interferometer and other, to elim-
inate noise and predict glitches. This project
primarily focuses on its ability to reduce noise
to notice SGWB in the detector channels.

A. Kurtosis and Independent Component
Analysis

Independent Component Analysis (ICA) is a
type of blind source data analysis which aims
to extract the useful underlying data from a
wide array of information using various statis-
tical techniques to separate the noise from the
source signal, even with little knowledge of the
actual source [13].

ICA operates by mixing several channels in
order to find a statistically independent sig-
nal inside [13]. This could be especially useful
to find some type of non-Gaussian disturbance
within the Virgo detectors.

In order to optimize Kurtosis for the chan-
nels, I found all the possible values of the fourth
and second momenta with the goal of minimiz-
ing and maximizing the Kurtosis Value.

Kurtosis is a form of higher-order statistics
used commonly in ICA. Kurtosis can be used to
measure non-Gaussianity using a weight vector
multiplied against the applicable channel val-
ues. The basis of the analysis consists of

Sy
K= 7] (2)
Sy = ww,;wiw;38;S;SkS) (3)
So = wyw;Xs;s; (4)
(5)

and follows these conditions

W=2X +Xa+X5+..+Xp

X1 = cos(0q)
Xy =sin(01) cos (O2)
)
)

(6)
(7)
(8)

X3 = sin (01) sin (©3) cos (03) (9)
Xp =sin(01)sin (O2) sin (O3) ... cos (B p)(10)
1= X2+ X2+ X2+ ...+ X3(11)
where ©; through ©p_; can be any value be-

tween 0 and II and ©p ranges between 0 and
211 [14].

B. The Code

The goal of the code is to interpret multi-
ple arrays each referred to as ”channels” with
a fixed set of elements or datapoints in them.
Each of these channels represent one detection
channel or reading from the Virgo Interferome-
ter, such as the laser input, laser output, mag-
nometer, and seisometer.

The code has the ability to read csv files,
though it can also generate simulated data di-
rectly from the project itself. This can all be
seen in the Appendix A.

The code keeps a dedicated logfile document-
ing the values produced in the dataset.

As seen by equations 6 through 11, each of
the components of each weight contains various
permutations of theta values. The significant
part when calculating the weight value is to en-
sure that

To calculate the Kurtosis, the code takes the
”correlation” matrix created with the stored
values of the various combinations of the chan-
nel values and compares those values with the
various weight values. Though C++ cannot
naturally perform recursive measures, some-
thing simulating was implemented to achieve
this effect.

For example, if there were three possible
channels, the correlation matrix for Sy and Sy
would hold all the values making up each com-
bination of the numbers one through three in
the placement of i, j, k, and 1.

1. The Simplified Code

In a simplified version of the code, data simu-
lation consisted of using set of weights, a default
standard deviation (sigma) value of 1.0, and a
random generation key.

Map was used to instead of using a recursive
mimic to find all the possible permutations with
however many channels to calculate the second
and fourth momentas for Kurtosis. Kurtosis
was generated using one angle in this version
and no recursive effects.

Only two and three channels were used in the
simplified version of the code, each with an ar-
tificial weight the goal was to recover. In or-
der to settle on the weights, a process called
Annealing was employed with increment values
of 1000, 2500, and 5000 which determined how
many times it could adjust

Two .csv files were created from this process
for the annealing process as well as Kurtosis.
The Kurtosis file paired theta between 0 and
21T (incrementing by .1) with the Kurtosis value
at that specific theta. The annealing file should
have documented the predicted weights, though
it seems it assumed there should have been three
weights with inputs of two.

Running the code once generated three trials
(trials of increments of 1000, 2500, 5000) with
ten different sets of weights.

A .txt file documented the weights used, in-
crements, sigmas, accompanied each trial.

C. Channel Data and Simulation

The model for the data we explored is very
simple. We suppose there are several time se-
ries, which can be written as

st = wid; +nf (12)

where n# is Gaussum noise, d; a non Gaussian
dlsturbance and w? are wezghts which param-
eterize the coupling of the disturbance to each
channel.

D. C++ and Coding Supplements

C++ was utilized to build the project for its
object-oriented focus. The GNU Scientific Li-
brary (GSL) was employed for its features re-
garding vector and matrix analysis,

To learn C++4 during this project, I used
Chat GPT to teach me how to build sections
of the code and to quickly navigate the GSL
documentation. It also could help in debugging
sections of the code and finding solutions to er-
ror messages. The Al was not always able to
complete the task at hand and provided faulty
suggestions, but it generally taught me enough.

In edition to C+4, Mathematica was em-
ployed to provide examples and outlines of the
future coding project. Working with a symbolic
computation language provided a simple ap-
proach to experimenting with the procedure be-
fore integrating the different parts into one cod-
ing projects. Signal and noise separation and
probability division techniques were two partic-
ular focuses of the Mathematica code. Addi-
tionally, Mathematica was used to generate the
final graphs and to generate data for the sim-
plified version of the code.

III. RESULTS

The main research conducted this summer
was the creation of the toolset and development.
Preliminary results from the simplified code are
as follows.

0.04
0.03
0.02
0.01

-0.01
-0.02
-0.03
-0.04
-0.05

-0.06 |-

-0.07

-0.08 |-

-0.09

-0.1+

-0.11
-0.12
-0.13
-0.14
-0.15
-0.16
-0.17
-0.18
-0.19

-0.2

0.02

-0.01

-0.02 |-

-0.03

-0.04

-0.05

-0.06

-0.07 |-

-0.08

Kurtosis Optimization

FIG. 3: A collection of the different weight values in response to using increments of 1000

Kurtosis Optimization

FIG. 4: A collection of the different weight values in response to using increments of 2500

, 0.9}
,0.8}
,0.7}
, 0.6}
, 0.5}
,0.1}
,0.2}
,0.3}
, 0.4}
, 0.5}

,0.9}
,0.8}
,0.7}
, 0.6}
, 0.5}
,0.1}
,0.2}
,0.3}
,0.4}
, 0.5}

Kurtosis Optimization

T (01,09}
{0.2,0.8)
—{03,07)
— {04,06)
— {05,05)
— {0.4,0.1)
— (02,02}
{03,0.3)

— {04,04)
— {05,05)

FIG. 5: A collection of the different weight values in response to using increments of 5000

Annealing
Increment Steps
00

0.02
0.04
0.06

0.08}

Annealing

: : . : Increment Steps
500 1000 1500 2000 2500

Annealing

0.010

0.005

Increment Steps
1000 2000 3000 4000 5000

0.005

FIG. 6: The difference between the annealing certainty in 1000, 2500, and 5000 increment steps

IV. ANALYSIS

The Kurtosis graphs demonstrated a clear
show of Gaussianity and Non-Gaussianity pro-
viding the ability to separate a Non-Gaussian
signal in further analysis.

The Annealing plots represent the eventual
narrowing of the process of determining the
weights inputted into the system. When ana-
lyzing increments of 1000, the graph is less sure
than with increments of 5000. 1000 is signif-
icantly less sure than 2500, but the difference
between 2500 and 5000 is not extreme, as seen
by 6. Optimization is key as to not spend more
resources on what will not actually affect the
experiment.

The code needs to be further refined to
demonstrate the results of predicting the weight
values.

V. CONCLUSION

Overall, the data simulation seems to be ef-
fective though the code needs further develop-
ment in order to demonstrate the proof of con-
cept. When optimizing for the annealing pro-
cess, it seems like 2500 steps is close to the ideal
amount of steps. The annealing process seems
to be promising in evaluating the weighted val-
ues, which will be significant when describing
non-simulated situations.

VI. FUTURE WORK

To further improve the code, I would adjust
the wave functions to have the expected signal
to noise ratio. Currently the stochastic signal
is too loud for what is expected. If this tech-
nique can show a much smaller signal can still
be seen, then it could be easier to translate into
real detection analysis.

I would eliminate the option to create multi-
ple runs at once of the data to streamline the
process. I may or may not keep data simulation
within Mathematica. It was a simple enough

process, but if the code can support the gener-
ation of data, that would be preferred.

One major addition I would make is rewrite
the input channels to read from a .txt file a list
of inputs such as whether it is simulating data
directly or reading a .csv file. This will simplify
the process.

I will also investigate whether a Monte Carlo
simulation would be more effective in calculat-
ing the weights rather than Annealing.

Additionally, this current model can be ap-
plied to find glitches in the detectors.

One bug I found in the simplified code at the
end related to the code not being able to prop-
erly read the length of an array, as seen by the
.txt file for annealing printing over three spaces
instead of two, and it would be worthwhile to
ensure this does not affect the other sections of
the code that depend on evaluating for a length
of two or three.

Further testing of this analysis to ensure the
results are correct is required as well as includ-
ing a way to account for non-Gaussian noise.

ACKNOWLEDGMENTS

I would to thank Dr. Paul Fulda, Dr. Peter
Wass, Dr. Kathryn McGill, and Dr. Nathaniel
Strauss for providing a space to research grav-
itational waves and travel abroad via the Uni-
versity of Florida’s International Research FEx-
perience for Undergraduates program as well as
the University of Florida Physics Department
itself. T would also like to thank my mentor,
Dr. Giancarlo Cella, for advising me over the
summer and teaching me about noise analysis
research and the Virgo Collaboration. His guid-
ance over the summer has taught me so much
about the field and I look forward to continu-
ing this work. Thank you to NSF grant PHY-
1950830 for funding this research and my sum-
mer abroad.

Stefano Rinaldi as well as many other grad-
uate and masters students at the University
of Pisa were vital to my success here as a re-
searcher but also to thriving in Pisa as well.
They have been great friends and have helped

Phia and T learn all about the city. They made
our summer here truly memorable.

logName = beginLog(); //CHECK make sure this works

. . "DATA UPLOAD" dl dl;
I would like to thank the Virgo Collabora- coue < o
tion, The University of Pisa, and INFN-Pisa for 1 SenCoimameFeomtSOTL 11 somame. startoorumn. sndCotumys

hosting me over the summer. Thank you to Dr.
Jon Ward (UF IREU alum ’12) and Dr. Tom
Carroll for introducing me to the program, es-
pec1ally to Tom for encouraging me to further // CHECK so I'm just making a matrix to practice running things through
my General RelathIty knowledge and to pursue // so this needs to be updated so that way things go into a matrix

. . gsl_matrix* testMatrix = gsl_matrix_alloc(numChannels, numData);

it as a research topic. Thanks as well to the rest

of the Ursinus College Physics and Astronomy

// real data needs to go in here
// make sure this has numChannels and numData edited somewher

}

// CHECK make sure everything necessary was written to the log

string anyKey;

Department for supporting me over the years cout << "Select Any Key to Continve to Kurtosis: " << endl;

. . cin >> anyKey; // I think this will just look for some input a3nd will accept it
and forming my research skills. I would also cout. << ondl;
like to thank my parents, brother, and cat, for // KURTOSTS

all their support. To the other IREU students, // GRIDS

I have loved getting to hear about everyone’s o S ndine he Promabiliey of 2 Foune in @ Location” << end;
adventures and misadventures and supporting pDOI Sy
cach other along the way. Lt e <

Flnauy I WOuld hke tO thank Phla MOrtOn, vector<string> probabilityMenu = {"Sphere", "Square", "Weighted Rectangles"};
the IREU Student I Spent my summer Wlth I cout << "Sorting the Probability By " << probabilityMenu(input) << endl;

loved spending my summer with you and trav-
eling across Italy. We certainly had quite the —

adventure. cout << "Input Step Size" << endl;
STEP = getValidDoubleInput();

probability (SSMATRIX CHECK, double x, double y, double STEP, int gridType);

sortPointsIntoGrid(&dataView.matrix, STEP);

. . // Calculate probability for a specific point
Appendix A: Appendix A: Code double x = 2.3; // Change these values as per your requirement
double y = 3.2;
double probability = calculateProbability(&dataView.matrix, x, y, STEP, false); // Use regul
cout << "Probability using regular grid: " << probability << endl;

This coding project included both header files

probability = calculateProbability(&dataView.matrix, x, y, STEP, true); // Use weighted grid

and source files. For the purposes of condensing cout << "Probability using weighted grid: " << probability << endl;
the information, only source files are included in // WALYSTS
. gsl_matrix* weights = gsl_matrix_alloc(numChannels, numData);
the appendlx. *weights = *DSphere: :Weights(); //CHECK maybe this needs to iterate through every run

// gsl_matrix**xx weights4D = gsl_matrix_alloc(numChannels, numData);

// *weights = *DSphere::Weights(); //CHECK maybe this needs to iterate through every run
// CHECK do the math for weights

double kurtosisValue = 0.0;

1. Main()

// for (int i = 0; i < NUM OF RUNS; i++);

kurtosisValue = kurtosisS4S2(weights, testMatrix);
int main() { //CHECK idk what this returns at the moment
string loglame;

// GRAPHS
cout << "Kurtosis Analysis Initialized" << endl;
cout << endl << "TTTTTTTTmmmosssssssssssssssss " << endl; cout << "Would You Like to Display a Graph?" << endl;
cout << " 0: Create Graphs" << endl;
cout << "What Would You Like to Analyze?" << endl; cout << " 1: Quit the Program" << endl;
cout << " 0: Simulated Data" << endl; input = getUserInput(validl);
cout << " 1: Real Data" << endl;
input = getUserInput(validl); if (input == 0) {
// graphs
int numChannels = 0; cout << endl;
int numData = 0; ¥
if (inmput == 0) { /* BEYOND GRAPHS */

cout << "Initializing Data Simulation" << endl << endl;
cout << "Would You Like to Do Something Else?" << endl;

logName = beginLog(); //CHECK make sure this works cout << " 0: Else" << endl;
cout << " 1: Quit the Program" << endl;
vector<gsl_matrix> runCollection; input = getUserInput(validl);
runCollection = Data::runSimulation(numChannels, numData);
} if (input == 0) { //CHECK this was formatting a little funky there might be some semicolon somew!
//CHECK what else would I want this to do
else { cout << endl;

cout << "Initializing Data Analysis" << endl << endl;

10

} }
}
cout << "program successfully printed to " << logName << endl; }
closeLog(); return correlationdD;
return 0; ¥
}
double expS2(gsl_matrix* weights, gsl_matrix* correlation) { // Exp[s~2] = WiWjCij
// INPUT: weights, correlation matrix
// OUTPUT: Expectation for S°2
// CHECK weights needs to be a solid input
2. evalKurtosis value = 005
N = weights->size2; // weights and correlation should be the same size and the num of channels
gsl_matrixx corMatrix2D(gsl_matrix* runMatrix) { // make correlation matrix for (size_t i = 0; i < N; i++) { // column
// INPUT: a matrix run of channels, num channels for (size_t j = 0; j < N; j++) { // row
// OUTPUT: Correlation Matrix value += gsl_matrix_get(weights, i, j) * gsl_matrix_get(correlation, i, j);
// for 2 Dimensions
}
numChannels = runMatrix->size2; eS2 = value;
channelLength = runMatrix->sizel;
N = static_cast<size_t>(numChannels); return eS2;
}
correlation2D = gsl_matrix_alloc(N, N);
// i1 and i2 will always be between [0,numChannels) double expS4(gsl_matrix**+* weights, gsl_matrix#x+* correlation) { // Exp[s~2] = WiWjCij
// INPUT: weights, correlation matrix
for (size_t i = 0; i < N; i++) { // channel i // OUTPUT: Expectation for S°4
elementl = 0.0;
element2 = 0.0; //N = weights->size2;
mult = 0.0;
value = 0.0; for (size_t i i< N; i++) {// it
for (size_t j Jo<N; g0 { /7 i2
for (size_t j = i; j < N; j++) { // channel j for (size_t k = 0; k < N; k++) { // i3
for (size_t k = 0; k < channelLength; k++) {// dot each component for (size_t 1 = 0; 1 < N; 1++) { // i4
elementl = gsl_matrix_get(runMatrix, i, k); value += get4DMatrixElement (weights, i, j, k, 1) * get4DMatrixElement (correlation, i, j, k, 1);
element2 = gsl_matrix_get(runMatrix, j, k); ¥
mult += elementl * element2; e
¥
¥
value = (1.0 / N) * mult; eS4 = value;
gsl_matrix_set(correlation2D, i, j, value);
gsl_matrix_set(correlation2D, j, i, value); return eS4;
}
}

double kurtosisS4S2(gsl_matrix* weights, gsl_matrix* runMatrix) {
return correlation2D;

numChannels = runMatrix->size2;
3} channelLength = runMatrix->sizel;

N = static_cast<size_t>(numChannels);
gsl_matrix***x corMatrix4D(gsl_matrix* runMatrix) {

// INPUT: a matrix run of channels, num channels // CHECK convert weights to 2D and 4D
// OUTPUT: Correlation Matrix
// for 4 Dimensions correlation2D = gsl_matrix_alloc(N, N); // CHECK should I be defining the same matrix in two differ

correlationdD = create4DMatrix(N, N, N, N); // CHECK this could be more efficient
numChannels = runMatrix->size2;

channelLength = runMatrix->sizel; weights2D = gsl_matrix_alloc(N, N);
N = static_cast<size_t>(numChannels); weights4D = create4DMatrix(N, N, N, N);
#*kxcorrelationdD = **x*create4DMatrix(N, N, N, N); *correlation2D = *corMatrix2D(runMatrix);

*correlationdD = *corMatrix4D(runMatrix);
for (size_t i = 0; i < N; i++) { // channel i

elementl = 0.0; s2 = expS2(weights, correlation2D);

element2 = 0.0; s4 = expS4(weights4D, correlation4D);

element3 = 0.0;

element4 = 0.0; kurtosis = s4 / (pow(s2, 2)); // CHECK do we want the -3 or not

mult = 0.0; // CHECK either way we need to demonstrate the max and min

value = 0.0; // CHECK so we’re evaluating kurtosis for the various linear combinations so we get that angle grapl
// correlation is already calculated once and we’re set there

for (size_t j = i; j < N; j++) { // channel j // weights will vary and then we’ll get a function in main that we can graph

for (size_t k k < N; k++) { // channel k

for (size_t 1 = k; 1 < N; 1++) { // channel 1

for (size_t m = 0; m < channelLength; m++) {// dot each component // CHECK print something to display and log

elementl = gsl_matrix_get(runMatrix, i, m); // CHECK this needs to return something

element2 = gsl_matrix_get(runMatrix, j, m); return kurtosis;

element3 = gsl_matrix_get(runMatrix, k, m); }

element4 = gsl_matrix_get(runMatrix, 1, m);

mult += elementl * element2 * element3 * element4;

value = (1.0 / N) * mult;

set4DMatrixValue (correlationdD, value) ; . . .

set4DMatrixValue(correlationdD, value) ; 3. linearCombination

set4DMatrixValue (correlationdD, value);

set4DMatrixValue(correlation4D, value);

set4DMatrixValue(correlationdD, value); vector<gsl_vector*> matrixToNestedVectors(gsl_matrix* runMatrix) {

set4DMatrixValue(correlationdD, value) ; int chanSize = runMatrix->size2

set4DMatrixValue(correlationdD, value) ; int chanLength = runMatrix->sizel

set4DMatrixValue (correlationdD, value) ; double valueV

b vector<gsl_vector*> runNestedVector;

¥

11

for (int i = 0; i < chanSize; i++) { gsl_vector_set(chanName.channelVector, i, sValue);
gsl_vector* channelVector = gsl_vector_alloc(chanLength); // Allocate a new vector for dach channel

for (int j = 0; j < chanLength; j++) { // Corrected the loop counter from i to j

valueV = gsl_matrix_get(runMatrix, i, j); chanName.Display () ;

gsl_vector_set(channelVector, j, valueV); // Set the value directly, don’t assign the result

runNestedVector . push_back (channelVector) ; void Data::gaussianChannelGen(Channelg chanName, int n) { /* so this is for the non-arms */
} chanName. channelVector = gsl_vector_alloc(n);

chanName.detectionChan = false;
return runNestedVector;

} for (int i = 0; i < n; ++i) {

noise = gsl_ran_gaussian(gslRng, stddev) + mean;
// Recursive function for nested loops with D dimensions sValue = noise;
template <size_t D> gsl_vector_set (chanName.channelVector, i, sValue);
void nestedLoop(std::vector<int>& indices, const std::vector<int>& loopLimits) { }
if (D 0 {

// Base case: Print the indices when D becomes zero (all nested loops are unrolled)}
for (size_t i = 0; i < indices.size(); ++i) {

std::cout << indices[i] << " gsl_matrixx Data::dataCall(int numberChannels, int numberData) {
¥

std::cout << std::endl; /* this is what is getting called by the class instance when you generate a run in main() */
else { Channel* c;

// Recursive case: Loop through all indices of the D-th dimension /* generate channel 1 and 2 */

for (int i = 0; i < loopLimits[D - 11; ++i) { ¢ = new Channel;

indices[D - 1] = i; c->setName ("L1") ;

nestedLoop<D - 1>(indices, loopLimits); // Recursive call for the next dimension dataGen(*c, numberData);

} channels. push_back (*c) ;

¥

3} ¢ = new Channel;

c->setName("L2");
dataGen(*c, numberData);
channels.push_back(*c);

channelAdditional = numberChannels - 2;
channelNun = 0;

4. dataGenV3 for (int i = 0; i < channelAdditional; i++) {

channelNum = i + 3;

nameTheChannel = "Channel" + channelNum; /* why do I have too many characters in a const */
Data::Data() { /* constructor */ ¢ = new Channel;
mean = 0.0; c->setName (nameTheChannel) ;
stddev = 1.0; gaussianChannelGen(*c, numberData);
LIO = true; }
other = false;
// do I need to have runMatrix constructed over here? built a prototype runMatrix = gsl_matrix_alloc(numberChannels, numberData);
// #C = columns; #D = rows;
nameOfRun = "basic name";
b for (int i = i < numberChannels; i++) { // columns
for (int j = 0; j < numberData; i++) { //rows
{ /* deconstructor */ gsl_matrix_set(runMatrix, i, j, gsl_vector_get(channels([i].channelVector, j));
name0fRun = " "; }
}
void Data::Channel::setName(const string& name) return runMatrix;
}
channelName = name;
¥ vector<gsl_matrix*> Data::runSimulation(int& numChannels, int& numData) {
void Data::Channel::Display() { cout << "SIMULATED DATA RUN1" << endl << endl;
cout << "Channel Name: " << channelName << endl;
cout << "Data Type: "; Data runi;
if (detectionChan /xtrue*/) { runl.runlteration = "Runl";
cout << "Laser Input/Output" << endl;
¥ cout << "RUN 1" << endl;
else {
cout << "Noise" << endl; numData = 20; // default
3} cout << "Input Number of Data Points: " << endl;
/* cout << "Channel Data: " << channelName << endl; */ numData = getPositiveIntegerInput();
cout << "Number of Data Points: " << numData << endl;

printGSLVector (channelVector) ;
numChannels = 5; // default

cout << endl; cout << "Input Number of Channels (including Laser Input (L1) and Laser Output (L2): " << endl;
nunChannels = getPositiveIntegerInput();
b cout << "Number of Channels: " << numChannels << endl;

dataGen(Channel% chanName, int n) { /* call twice for channels for in/out the ramfioldsction.push_back(runi.dataCall(numChannels, numData));

size of array */ //CHECK idk if this works
chanName . channelVector = gsl_vector_alloc(n); runNumber = 1;
chanName .detectionChan = true;
chanName.dataPoints = n; do {
cout << "Would You Like to Add Another Data Run?" << endl;

gsl_rng_env_setup(); cout << " 0: yes" << endl; /* false ¥/
gslRng = gsl_rng_alloc(gsl_rng_mt19937); cout << " 1: no" << endl; /* true */
gsl_rng_set(gslRng, 5); /* this was gen() */ input = getUserInput(validi);
for (int i = 0; i < nj ++i) { // CHECK all of this needs to be fixed with the redefinitions and etc

val = gsl_ran_flat(gslRng, -1.0, 1.0); if (lanswer) {

sample = sin(val); runNumber += 1;

noise = gsl_ran_gaussian(gslRng, stddev) + mean; nameOfRun = "Run" + std::to_string(runNumber);

sValue = sample + noise;

12

Data runName; void DataImport::Properties() {
runName.runIteration = nameOfRun; cout << "Input File Name: " << endl;
runCollection.push_back(runName.dataCall(numChannels, numData)); /* idk if thiim ¢ HddeNakw;a pointer right */
cout << "Start Column: " << endl;
} while ('answer); cin >> startColumn;
cout << "End Column: " << endl;
return runCollection; cin >> endColumn;
summarizeSimulation(runNumber, numChannels, numData); // possibly set for rows. this code automatically reads the entire column

// maybe make the header for the column the name of the channel. name that somewhere
cout << endl;

vector<vector<double>> columns = readColumnsFromASCII(fileName, startColumn, endColumn);
void Data::dataLog(ofstream& logFile, Data& dataInstance) {

nameOfRun = toString(datalnstance); // Print the extracted data

for (size_t i = 0; i < columms.size(); ++i) {
logFile << nameOfRun << ": " << endl; for (size_t j = 0; j < columns[i].size(); ++j) {
logGSLMatrix(dataInstance.runMatrix) ; cout << columns[i] [j] << "\t

logFile << endl;
cout << endl;

logFile << "Kurtosis Values: " << endl;
logFile << " << "print value" << endl;
logFile << " << "print value" << endl; }
for (int i = 6; i++) { //CHECK update 5 to be numberChannels from data object
logFile << " << i << " print value" << endl; void Datalmport::uploadData() {
b Properties();

logFile << endl;
// so tm it’s a double vector and like this isn’t sustainable but like it’ll be what we deal wit
//as long as I use matrix get this should work

// CHECK hopefully this works

5. datalmport 6. 4DMatrix

DatalImport: :DataImport() {
cout << endl;

} gsl_matrixxkkk create4DMatrix(int I1, int I2, int I3, int I4) {
N1 = I1;
Datalmport: : “DataImport() { N2 = I2;
cout << endl; N3 = I3;
3} N4 = I4;

vector<vector<double>> DataImport::readColumnsFromASCII(const string& filename, size_t stmttQodinr, neizgsl erdGdiums[] ;

// Open the ASCII file for (imt i = 0; i < N1; ++i) {
ifstream file(filename); matrix4D[i] = new gsl_matrix**[N2];
if (1file.is_open()) {
cerr << "Error opening the file: " << filename << endl; for (int j = 0; j < N2; ++j) {
¥ matrixdD[i] [j] = new gsl_matrix+[N3];
string line; for (int k = 0; k < N3; ++k) {
while (getline(file, line)) { matrix4D[i][j1[k] = gsl_matrix_calloc(N4, N4);
vector<double> rowData; // Initialize the individual 2D matrices here if needed
stringstream ss(line); }
string cell; }
}
size_t column = 0; return matrix4D;
while (getline(ss, cell, ’,’)) { }
if (column >= startColumn &% column <= endColumn) {
double value; void set4DMatrixValue(gsl_matrix*** matrixdD, int i, int j, int k, int 1, double value) {
try { gsl_matrix_set(matrixaD[i][j]1[k], 1, 1, value);
value = stod(cell); ¥
catch (const invalid_argument& e) { double get4DMatrixElement (gsl_matrix**** matrix4D, int i, int j, int k, int 1) {
cerr << "Error converting data to double: " << cell << endl; return gsl_matrix_get(matrix4D[i][j1[k], 1, 1);
value = 0.0; // Set to default value in case of conversion error}
¥
rowData.push_back(value); void free4DMatrix(gsl_matrix*xxx matrix4D) {
for (int i = 0; i < Ni; ++i) {
++column; for (imt j = 0; j < N2; ++j) {
3} for (int k = 0; k < N3; ++k) {

gsl_matrix_free(matrix4D[i] [j]1[k]);
if (lrowData.empty()) {

columns.push_back(rowData) ; delete[] matrix4D[i][jl;
¥
} delete[] matrix4D[il;
}
file.close(); delete[] matrix4D;

return columns;

7. formatting

void printGSLVector(const gsl_vector* vec) {
cout << "[";
for (size_t i =
cout << gsl_vector_get(vec, i);
if (i !'= vec->size - 1) {
cout << ", ";

0; i < vec->size; ++i) {

¥

cout << "]" << endl;
}
void printGSLMatrix(const gsl_matrix* matrix) {

if (matrix == nullptr) {
cout << "Matrix is nullptr." << endl;

return;
}

rows = matrix->sizel;
cols = matrix->size2;

for (size_t i = i < rows; ++i) {
for (size_t j = 0; j < cols; ++j) {
value = gsl_matrix_get(matrix, i, j);
cout << value << "

cout << endl;
}
int getUserInput(const vector<int>& validOptions) {

while (true) {
cin >> input;

13

std::ostringstream ss;
ss << x;
return ss.str();

8. grid

double
double
double
double

domainMin;
domainMax;
rangeMin;
rangeMax;

double
double
double
double

domainDiff;
rangeDiff;
domainStep;
rangeStep;

gs1_vector* domainBox;
gsl_vector* rangeBox;

double x;
double y;

int column;
int row;

int numColumns;
int numRows;

vector<vector<double>> divisions;

if (std::cin.fail() || std::find(validOptions.begin(), validOptions.end(), input) == validOptions.end()) {

cout << "Input a Valid Response: \n";
cin.clear();
:cin.ignore(st

::numeric_limits<std::streamsize>::max(),

\n’);

gsl_matrix* createDataMatrix(gsl_matrix* runMatrix) {
size_t numRows = runMatrix->sizel;
gsl_matrix* dataMatrix = gsl_matrix_alloc(numRows, 2);
double value;

std::cin.ignore(std: :numeric_limits<std::streamsize>::max(), ’\n’); // Ignore any extra input

return input;

}

double getValidDoubleInput() {
while (true) {
cin >> value;

if (std::cin.fail()) {
cout << "Invalid input. Please enter a valid double.\n";

for (int i =
for (int j
value =

0; i < numRows; i++) { // rows
0; j <25 j++) { // columns
gsl_matrix_get(runMatrix, i, j);
gsl_matrix_set(dataMatrix, i, j, value);

}
}
return dataMatrix;

} // this returns a matrix with just the first two columns which should be the channels

void analyzeDomainAndRange(const gsl_matrix* dataMatrix, doublef domainMin, doubleZ domainMax,
// Initialize domain and range with the first data point
domainMin = gsl_matrix_get(dataMatrix, 0, 0);
domainMax = gsl_matrix_get(dataMatrix, 0, 0);
rangeMin = gsl_matrix_get(dataMatrix, 0, 1);
rangeMax = gsl_matrix_get(dataMatrix, 0, 1);

std::cin.ignore(std: :numeric_limits<std::streamsize>::max(), ’\n’); // Ignord/afipogutiwoigmthe data matrix to find min and max

std::cin.clear();
std::cin.ignore(std::numeric_limits<std::streamsize>::max(), ’\n’);
¥
else {
break;
¥

}

return value;

¥

bool isPositivelInteger(int num) {
return num > 0;

}

int getPositivelIntegerInput() {
int num;
cin >> num;
while (true) {
if (cin >> num &% isPositiveInteger(num)) {
// Input is valid, break out of the loop
break;
¥
// Input is invalid, clear the error flag and ignore the rest of the input
cout << "Invalid input. Please enter a positive integer." << std::endl;
std::cin.clear();
std::cin.ignore(std: :numeric_limits<std::streamsize>::max(), ’\n’);
}

return num;

template<typename T>
string toString(const T& x)

for (size_t i = 0; i < dataMatrix->sizel; ++i) {

double x = gsl_matrix_get(dataMatrix, i, 0);
double y = gsl_matrix_get(dataMatrix, i, 1);
if (x < domainMin) domainMin = x;

if (x > domainMax) domainMax = x;

if (y < rangeMin) rangeMin = y;

if (y > rangeMax) rangeMax = y;

}

void squareDimensions(const gsl_matrix* dataMatrix, double STEP) {
analyzeDomainAndRange (dataMatrix, domainMin, domainMax, rangeMin, rangeMax);

logFile << "Grid Dimensions" << endl;

logFile << "Domain Min: " << domainMin << endl;
logFile << "Domain Max: " << domainMax << endl
logFile << "Range Min: " << rangeMin << endl

logFile << "Range Max: " << rangeMax << endl << endl

// Calculate the grid dimensions

numColumns = static_cast<int>((domainMax - domainMin) / STEP) + 1;
numRows = static_cast<int>((rangeMax - rangeMin) / STEP) + 1;
// Initialize the grid with zero counts

gsl_matrix* grid = gsl_matrix_calloc(numRows, numColumns);

// Loop through the data and populate the grid
// sizel is the rous
for (size_t i = 0; i < dataMatrix->sizel; ++i) {

doubl

14

x = gsl_matrix_get(dataMatrix, i, 0); numRows = divisions.size() - 1;
y = gsl_matrix_get(dataMatrix, i, 1); // ... Additional logic to set columns and rows based on divisions
// CHECK fix the 10
column = static_cast<int>((x - domainMin) / STEP); }
row = static_cast<int>((y - rangeMin) / STEP); else {
numColumns = static_cast<int>((domainMax - domainMin) / STEP) + 1;
gsl_matrix_set(grid, row, column, gsl_matrix_get(grid, row, column) + 1); numRows = static_cast<int>((rangeMax - rangeMin) / STEP) + 1;
¥ ¥
// Output the grid gsl_matrix* grid = gsl_matrix_calloc(numRows, numColumns);
cout << "Grid with step size " << STEP << ":\n";
for (int row = 0; row < numRows; ++row) { int totalCount = dataMatrix->sizel;
for (int col = 0; col < numColumns; ++col) {
cout << gsl_matrix_get(grid, row, col) << " "; for (size_t i = 0; i < dataMatrix->sizel; ++i) {
¥ x = gsl_matrix_get(dataMatrix, i, 0)
cout << "\n"; y = gsl_matrix_get(dataMatrix, i, 1);
}
column = static_cast<int>((x - domainMin) / STEP);
gsl_matrix_free(grid); row = static_cast<int>((y - rangeMin) / STEP);

gsl_matrix_set(grid, row, column, gsl_matrix_get(grid, row, column) + 1);

vector<vector<double>> weightedBoxDimensions(const gsl _matrix* dataMatrix, int N) { ¥
analyzeDomainAndRange (dataMatrix, domainMin, domainMax, rangeMin, rangeMax);
// Normalize the grid by dividing the counts by the total count
vector<double> xPoints; gsl_matrix_scale(grid, 1.0 / totalCount);
vector<double> yPoints;
// Print the probability matrix
// Extract the points’ x and y coordinates from the data matrix cout << "Probability Matrix with step size " << STEP << ":\n";
for (size_t i ; i < dataMatrix->sizel; ++i) { for (int row = 0; row < numRows; ++row) {
double x = gsl_matrix_get(dataMatrix, i, 0); for (int col = 0; col < numColumns; ++col) {
double y = gsl_matrix_get(dataMatrix, i, 1); cout << gsl_matrix_get(grid, row, col) << " ";
xPoints.push_back(x) ; }
yPoints.push_back(y); cout << "\n";
} }
// Sort the x and y coordinates gsl_matrix_free(grid)
:sort(xPoints.begin(), xPoints.end()); ¥

ort (yPoints.begin(), yPoints.end());

// Calculate the boundaries for each division
vector<vector<double>> divisions(N + 1, vector<double>(2, 0.0));

for (int i = i<=N; ++i) {
int index = static_cast<int>((i * dataMatrix->size1) / N);
if (index >= dataMatrix->sizel) { 9. graph
index = dataMatrix->sizel - 1;

}
void S1vS2(const gsl_vector* sli, const gsl_vector* s2) {
divisions[i] [0] = xPoints[index]; if (s1->size != s2->size) {
divisions[i][1] = yPoints[index]; cerr << "Error: Vectors should have the same size for scatter plotting." << endl;
¥ return;
¥
return divisions;
¥ Gnuplot gp;
gp << "plot ’-’ with points title ’Scatter Plot’" << std::endl;
double probability(const gsl_matrixx dataMatrix, double x, double y, double STEP, int gridbyfaht{i = 0; i < sl->size; ++i)
analyzeDomainAndRange(dataMatrix, domainMin, domainMax, rangeMin, rangeMax); gp << gsl_vector_get(sl, i) << " " << gsl_vector_get(s2, i) << endl;
if (gridType == 0) { gp << "e" << endl;
cout << "sphere" << endl;
¥
else if (gridType == 1) { // CHECK Linear Combination???
double N = (domainMax - domainMin) / STEP;
divisions = weightedBoxDimensions(dataMatrix, N); void anglevKurtosis() {
numColumns = divisions.size() - 1; // all the different angles and show Kurtosis Value
numRows = divisions[0].size() - 1;
// ... Additional logic to set columns and rows based on divisions ... cout << endl;
// CHECK b
} else { void plotChannels(Gnuplot& gp, const gsl_vector** vectors, int n, double xmin, double xmax, bool aut:
numColumns = static_cast<int>((domainMax - domainMin) / STEP) + 1; double ymin;
numRows = static_cast<int>((rangeMax - rangeMin) / STEP) + 1; double ymax
¥ double value;
column = static_cast<int>((x - domainMin) / STEP); if (autoRange) {
row = static_cast<int>((y - rangeMin) / STEP); for (int i = 0; i < n; ++i) {
ymin = gsl_vector_min(vectors[il);
int totalCount = dataMatrix->sizel; ymax = gsl_vector_max(vectors[il);
int boxCount = gsl _matrix_get(dataMatrix, row, column); if (i 0 {
ymin = ymax = gsl_vector_get(vectors[il, 0);
return static_cast<double>(boxCount) / static_cast<double>(totalCount); ¥
¥
for (int j = 0; j < vectors[il->size; ++j) {
void printProbabilityMatrix(const gsl_matrix* dataMatrix, double STEP, int gridType) { value = gsl_vector_get(vectors[il, j);
analyzeDomainAndRange (dataMatrix, domainMin, domainMax, rangeMin, rangeMax); if (value < ymin) ymin = value;
if (value > ymax) ymax = value;
if (gridType 0 { b
cout << "sphere" << endl;
if (1==0) {
else if(gridType A gp << "set yrange [" << ymin << ":" << ymax << "]J\n";

divisions = weightedBoxDimensions(dataMatrix, 10);
numColumns = divisions.size() - 1; else {

gp << "set yrange [" << (ymin < gp.get_yrange()[0] ? ymin :

<< " << (ymax > gp.get_yrange() [1] ? ymax
}
}
¥
else {
gp << "set xrange [" << xmin << ":" << xmax << "]\n"
¥
gp << "plot "
for (int i = 0; i < n; ++i) {
gp << "’=? with lines title ’Vector " << i + 1 << "’";
if (i <n-1){
gp << ", "
}
gp << endl;

for (int i = 0; i < n; ++i) {
for (int j = 0; j < vectors[il->size; ++j) {
gp << j << " " << gsl_vector_get(vectors[i], j) << endl;
}

gp << "e" << endl;

10. log

string beginLog() {

¥

cout << "Input Logfile Name: " << endl;
cin >> loglame;

logName = logName + ".txt";

cout << "Logfile Name: " << logName << endl;
cout << endl;

logFile.open(logName) ;

// include ’app’ to append to the file (but I want a new one each time)
/* ofstream and ios are std */

/* ios means input/output stream */

if (!logFile.is_open()) {
cerr << "Error opening log file." << endl; // also cerr
}

return logName;

void channelLog() {

}

logFile << "Channel Summary" << endl;

// print out the numbers generated for the log

void runLog() {

¥

logFile << "Kurtosis Analysis: " << endl;
logFile << " CHECK print matrix: " << endl
logFile << endl;

void simulationLog(int numRuns) {

if (logFile.is_open()) {
logFile << "Simulation Summary" << endl;

// replace int numRuns with the data structure I would pass in
// add a way to count the runs and then the columns/rows in each matrix
// get rid of void

15

gp.get_yrange () [0)) CHECK
gp.get_yrange() [1]) << "I\n";

for (int i = 0; i < numRuns; i++) {
logFile << "Print for Each Run like Run: num" << endl;
// call runlog and channellog

}
void graphLog() {

if (logFile.is_open()) {
logFile << "print graphs or maybe just the type of graphs gener:

void summarizeSimulation(int runNumber, int numChannels, int numData) {
if (logFile.is_open()) {

cout << "Data Summary: " << endl;

cout << " Number of Runs: " << runNumber << endl;

cout << " Number of Channels: " << numChannels << endl

cout << " Number of Data Points: " << numData << endl

cout << endl;

logFile << logName << endl;

logFile << endl << ""TTTTTmmmmmsmmssssssssssseses " << endl;

// this prints to the log

logFile << "Data Summary: " << endl;

logFile << " Number of Runs: " << runNumber << endl;

logFile << " Number of Channels Per Run: " << numChannels <<
logFile << " Number of Data Points Per Channel: " << numData
logFile << endl;

// call from formatting the part where I print the log summarie

¥

void logGSLVector(const gsl_vector* vec) {

logFile << "[";

for (size_t i = 0; i < vec->size; ++i) {
logFile << gsl_vector_get(vec, i);
if (i != vec->size - 1) {

logFile << ", "

}

}

logFile << "]" << endl;
¥

void logGSLMatrix(const gsl_matrix* matrix) {
if (matrix == nullptr) {
logFile << "Matrix is nullptr." << endl;
return;

size_t rows = matrix->sizel;

size_t cols = matrix->size2;
for (size_t i = 0; i < rows; ++i) {
for (size_t j = 0; j < cols; ++j) {
double value = gsl_matrix_get(matrix, i, j);
logFile << value << " ";

logFile << endl;
}
void closeLog() {
if (logFile.is_open()) {

logFile.close();
}

[1] A. Einstein, |Approximative Integration of the
Field Equations of Gravitation| (1916), volume
6: The Berlin Years: Writings, 1914-1917 (En-
glish translation supplement) Page 201 (213 of

462).

[2] LIGO Lab CalTech,|Sources and types of grav-
itational waves| ().

[3] D. Lindley, A Fleeting Detection of Gravita-

ated " << endl;

endl;

<< endl;

s in simulationLog()

https://einsteinpapers.press.princeton.edu/vol6-trans/213
https://einsteinpapers.press.princeton.edu/vol6-trans/213
https://www.ligo.caltech.edu/page/gw-sources
https://www.ligo.caltech.edu/page/gw-sources

tional Waves, Physics 16, 19 (2005)| publisher:
American Physical Society.

[4] LIGO Lab CalTech, |Timeline] ().

[5] LIGO Lab CalTech, The science of LSC re-

search ().

| LIGO Lab CalTech, Why detect them?| ().

] Virgo Interferometer, Detector|().

] Virgo Interferometer, Sensitivity|().

| S. Biscoveanu, C. Talbot, E. Thrane,

and R. Smith, Measuring the primordial
gravitational-wave background in the presence
of astrophysical foregrounds, Physical Review
Letters 125, 241101 (2020), arXiv:2009.04418
[astro-ph, physics:gr-qc].

[10] V. Mandic and A. Buonanno, Accessibility of
the pre-big-bang models to LIGO, |Physical Re-
view D 73, 063008 (2006), publisher: American
Physical Society.

[11] W. Giare and A. Melchiorri, Probing the infla-
tionary background of gravitational waves from
large to small scales, [Physics Letters B 815,
136137 (2021),

[12] G. Agazie, A. Anumarlapudi, A. M. Archibald,
Z. Arzoumanian, P. T. Baker, B. Bécsy,
L. Blecha, A. Brazier, P. R. Brook, S. Burke-
Spolaor, R. Burnette, R. Case, M. Charisi,
S. Chatterjee, K. Chatziioannou, B. D. Cheese-
boro, S. Chen, T. Cohen, J. M. Cordes,
N. J. Cornish, F. Crawford, H. T. Cromar-
tie, K. Crowter, C. J. Cutler, M. E. DeCe-
sar, D. DeGan, P. B. Demorest, H. Deng,
T. Dolch, B. Drachler, J. A. Ellis, E. C. Fer-
rara, W. Fiore, E. Fonseca, G. E. Freedman,
N. Garver-Daniels, P. A. Gentile, K. A. Gers-

[13]

[14]

16

bach, J. Glaser, D. C. Good, K. Giiltekin, J. S.
Hazboun, S. Hourihane, K. Islo, R. J. Jennings,
A. D. Johnson, M. L. Jones, A. R. Kaiser,
D. L. Kaplan, L. Z. Kelley, M. Kerr, J. S. Key,
T. C. Klein, N. Laal, M. T. Lam, W. G. Lamb,
T. J. W. Lazio, N. Lewandowska, T. B. Lit-
tenberg, T. Liu, A. Lommen, D. R. Lorimer,
J. Luo, R. S. Lynch, C.-P. Ma, D. R. Madi-
son, M. A. Mattson, A. McEwen, J. W. Mc-
Kee, M. A. McLaughlin, N. McMann, B. W.
Meyers, P. M. Meyers, C. M. F. Mingarelli,
A. Mitridate, P. Natarajan, C. Ng, D. J. Nice,
S. K. Ocker, K. D. Olum, T. T. Pennucci,
B. B. P. Perera, P. Petrov, N. S. Pol, H. A.
Radovan, S. M. Ransom, P. S. Ray, J. D.
Romano, S. C. Sardesai, A. Schmiedekamp,
C. Schmiedekamp, K. Schmitz, L. Schult, B. J.
Shapiro-Albert, X. Siemens, J. Simon, M. S.
Siwek, 1. H. Stairs, D. R. Stinebring, K. Sto-
vall, J. P. Sun, A. Susobhanan, J. K. Swiggum,
J. Taylor, S. R. Taylor, J. E. Turner, C. Unal,
M. Vallisneri, R. v. Haasteren, S. J. Vigeland,
H. M. Wahl, Q. Wang, C. A. Witt, O. Young,
and T. N. Collaboration, The NANOGrav 15
yr Data Set: Evidence for a Gravitational-wave
Background, 'The Astrophysical Journal Let-
ters 951, L8 (2023), publisher: The American
Astronomical Society.

J. V. Stone, Independent Component Analy-
sis: A Tutorial Introduction (MIT Press, Cam-
bridge, Mass, 2004).

A. Tharwat, Independent component analysis:
An introduction, |Applied Computing and In-
formatics 17, 222 (2020), publisher: Emerald
Publishing Limited.

https://doi.org/10.1103/PhysRevLett.25.180
https://www.ligo.caltech.edu/page/timeline
https://www.ligo.org/science/Publication-O3GEO-KAGRA/
https://www.ligo.org/science/Publication-O3GEO-KAGRA/
https://www.ligo.caltech.edu/page/why-detect-gw
https://www.ligo.caltech.edu/page/why-detect-gw
https://www.virgo-gw.eu/science/detector/sensitivity/
https://doi.org/10.1103/PhysRevLett.125.241101
https://doi.org/10.1103/PhysRevLett.125.241101
https://doi.org/10.1103/PhysRevD.73.063008
https://doi.org/10.1103/PhysRevD.73.063008
https://doi.org/10.1016/j.physletb.2021.136137
https://doi.org/10.1016/j.physletb.2021.136137
https://doi.org/10.3847/2041-8213/acdac6
https://doi.org/10.3847/2041-8213/acdac6
https://doi.org/10.1016/j.aci.2018.08.006
https://doi.org/10.1016/j.aci.2018.08.006

