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To detect long-transient wave signals produced by newly born magnetars in the time-frequency
domain, we use PyTorch to train a convolutional neural network that is able to detect these signals.
A simulation is made to project randomly generated signals onto a square matrix of Gaussian noise.
This simulated data is then used to train and test a convolutional neural network. Training is
repeated with variable model sizes and training loop inputs until the model can be successfully
trained using data with a low signal amplitude relative to the background noise. With a Gaussian
noise centered at an amplitude of zero and a standard deviation of 0.5, we were able to find a model
and a proper set of training loop inputs to get an accuracy of 74.7% at a signal amplitude of one.
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I. INTRODUCTION

With the first detections of gravitational waves from
compact binary systems occurring in the last decade, a
whole new kind of physics has been revealed. So far
our detectors have only been sensitive enough to measure
mergers of binary black hole and neutron star systems.
Many other types of gravitational waves are theorized
however, coming from many di�erent sources that we
hope to detect in the future [1]. One of these sources that
can produce strong long-transient gravitational waves is
newly born magnetars. These stars are of particular in-
terest since they are able to produce a distinct, strong
signal that can vary with respect to the neutron star’s
properties [2].

Magnetars have an extremely large magnetic field in-
side their core relative to other neutron stars. This strong
field leads to a great deal of instability within the star,
resulting in a lower level of spherical symmetry, or higher
ellipticity. The ellipticity is highest when these stars are
first born, when they are spinning at their highest speeds
and are most unstable in their core as a result [3][2]. A
higher rotational frequency and ellipticity will produce
the strongest gravitational waves with which our detec-
tors are be most likely to measure. These stars also have
a high rate of spindown early in their lives as a result of
the massive release in energy through these gravitational
waves. The signature of their signal through time can be
used to teach us more about neutron stars as a whole [2].

Since our detectors are not yet sensitive enough to find
these long transient-wave signals underneath the noise,
we must look for ways to bring out these signals using
computational methods. In this project, we use machine
learning techniques with a convolutional neural network
to find the data that contains our desired signals. Time-
frequency maps, modeled after ones that would be gener-
ated by LIGO detectors, will be simulated containing our
desired signal to train our neural network. This process
will be described in Sec. II.

The goal of our machine learning is to allow the com-
puter to ”see” the signals generated by these magnetars,
matching those described in theory, beyond the strong
background noise. The relationship between time and
frequency in our magnetar system is non-linear however,
so finding the proper parameters for a convolutional fil-
ter is not a trivial task [4]. To do this, many rounds of
training is required to find the optimal network size and
training loop parameters for our machine learning model.

This method of searching for these particular signals
is especially useful because finding one in our time-
frequency maps confirms it is most likely what we are
looking for due to its unique signature. With ordinary,
slow spinning, low magnetic field neutron stars, there is
negligible change in frequency over the same time scales
resulting in a horizontal line in a time-frequency map.
This can be much more easily found through machine
learning, but it is impossible to di�erentiate with the
many sources of noise that would generate the same type

of signal. Using the same method would not be as prac-
tical in these scenarios.

Our machine learning model will be created in python
using the PyTorch framework1 as described in Sec. III.
Multiple rounds of training will be done to find the best
parameters of our network so the computer will be able
to find the signal as it is generated at amplitudes near
the amplitudes of the background noise. This process
is described in Sec. IV with the results of this training
illustrated in Sec. V.

II. SIMULATING A SIGNAL

In order to create a neural network that can deter-
mine the presence of this specific long-transient gravita-
tional wave signal, simulated data is required for train-
ing. To properly train our network, the simulated data
needs to fill two requirements: it must resemble real data
that would come from the LIGO detectors, and each
piece of data must have corresponding metadata telling
us whether or not there is a signal to easily calculate a
value for the loss. The time-frequency maps from our
simulation are square matrices of variable size with the
absolute value of Gaussian noise arbitrarily around an
amplitude value of zero and standard deviation of 0.5
as shown in Fig. 1a. The magnitudes of the amplitudes
here are arbitrary since only the relationship between the
signal amplitude and the noise amplitudes is relevant to
create a properly trained model. Each map will cover a
time of 1200 seconds and a frequency range of 150 hertz.
After creating a map of noise, we insert a random sig-
nal (with certain constraints) onto a random part of the
map.

In this study, we focus on magnetars that rotate
around one of their principle axes with the following
equation for the spindown [4]

ḟ = ≠kGW f5 kGW = 32
5

GI‘2fi4

c5 (1)

We use the the inertia of a typical neutron star with
a value of I = 1038 Kg m2. The ellipticity (‘) repre-
sents the measure of asymmetry in the spherical shape of
the star and is dependant on the star’s properties. For
this simulation, we use a range of ‘ values from 3e≠4

to 3e≠4, big enough to get a noticeable change in fre-
quency within our 1200 second time frame. This equa-
tion assumes that gravitational waves are the dominant
contribution to the energy loss of the star rather than
electromagnetic forms of energy [4]. Being a stronger
source for the long-transient gravitational waves we are
searching for, LIGO is more likely to detect these signals
from these magnetars rather than any other neutron star
source, making them the best model for our simulation.

1 Reference book used for this project can be found here[5]
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FIG. 1: Time-frequency maps created by the simulation as described in Sec. II. (a), empty map of Gaussian noise
centered around amplitude of 0 with standard deviation of 0.5. (b), map of noise with one possible signal of

amplitude 1.5. (c), map of noise with one possible signal of amplitude 1.

To get an equation of frequency with respect to time,
we must solve the di�erential equation in Eq. (1) to get
the following equation

f = f0

3
1 + t

·

4≠ 1
4

· = 1
4f4

0 kGW
(2)

The initial frequency in our simulation will be anywhere
in the range f0 = 1250 to 2000. We take output from
this function with randomly chosen parameters and map
it out onto the empty noise matrix. The starting point
of the function (the point in the signal with highest fre-
quency) is placed at random points along the left or
top axes. Examples of this are shown in Fig. 1b and
in Fig. 1c. This random origin placement is done to
mimic the time-frequency maps that would be created
from LIGO data.

A specified number of matrices are created along with
a specified percentage of empty matrices when the sim-
ulation is run. Since LIGO uses HDF5 files to store its
data, each matrix is saved as an HDF5 file, with the en-
tire data set being saved in its own HDF5 group. The
program also saves a Boolean value as metadata attached
to each matrix, labeling it as containing a signal or not.
After running the simulation, we are able to create and
store a data set that resembles real data from LIGO ob-
servatories with each piece of data labeled as having a
signal or not. Next, we must create the model that will
use this data to learn to find long-transient signals within
the noise.

III. CREATING A MODEL

The first thing required in any machine learning
project is to convert the raw data into data that can be
used as an input to our neural network. In PyTorch, we
are able to create a custom dataset class that acts as the

vehicle to bring data from the HDF5 files that we pro-
vide directly to the program in a usable format. Later,
when we start to train our model, PyTorch’s dataloader
function will use this custom class to extract the exact
data we need in the format we need it to be in.

Next, need to build the model that our data will go
through. It is going to start o� as a simple convolutional
neural network. The exact structure of the model can
be found in Lst. 1. Later on, we will adjust its size and
each layers parameters to make it more complex, allowing
for better results. Our new model takes an individual
time-frequency map as an input and outputs a list of two
numbers within the range -1 to 1. A higher value at index
0 indicates there is no signal, and a higher value at index
1 indicates the presence of a signal.

After creating a way to access our data and a model to
accept it, the information we get from running the data
through it is useless since the parameters of the model
(the weights and biases) are set at random. We need a
way to train the parameters of our model so that it may
accurately tell us what time-frequency maps contain a
signal. To prepare for this, we must create a training
loop.

The training loop is meant to do two things. First
of all, it must train the model to calculate the parame-
ters that will generate a meaningful output. Second, it
also must give us information on how we might change
the inputs of the training loop to improve the results if
the desired parameters were not found. In order to train
the model, our loop requires an input of the model we
want to train, the data set we will use to train in the
form of a PyTorch dataloader object, an optimizer, and
a loss function. The data is put into the model initially
in batches of size ten (arbitrarily) and the average loss is
calculated using the loss function. The loss represents a
numerical value to describe how much error a model has
in predicting the contents of our data. This information
is given to the optimizer which goes back through the
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Listing 1: Initial Model Class
1 import torch
2 from torch import nn
3 import torch . nn . f u n c t i o n a l as F
4
5 c l a s s Network (nn . Module ) :
6 de f i n i t ( s e l f , MatDim ) :
7 super ( ) . i n i t ( )
8 s e l f . conv1 = nn . Conv2d (1 , 8 , k e r n e l s i z e =7, padding=3)
9 s e l f . conv2 = nn . Conv2d (8 , 4 , k e r n e l s i z e =7, padding=3)

10 s e l f . l i n 1 = nn . Linear (4� i n t ( (MatDim/4)��2) , 10)
11 s e l f . l i n 2 = nn . Linear (10 , 2)
12 s e l f . MatDim = MatDim #al l ows f o r v a r i a b l e s i z e maps
13
14 de f forward ( s e l f , x ) :
15 x = F. max pool2d ( torch . r e l u ( s e l f . conv1 ( x ) ) , 2)
16 x = F. max pool2d ( torch . r e l u ( s e l f . conv2 ( x ) ) , 2)
17 x = x . view (≠1 , 4� i n t ( ( s e l f . MatDim/4)��2) )
18 x = torch . r e l u ( s e l f . l i n 1 ( x ) )
19 x = s e l f . l i n 2 ( x )
20 re turn x

model, known as back propagation, to adjust its parame-
ters in a way that is expected to lower the loss. Once the
entire data set has been through the model, one epoch
is completed. After this happens for a specified number
of epochs, the training is completed and we have a fully
trained model. In order to be able to determine if the
training was successful, we also need to input a second
set of data that will not be used to train, but will act as
a verifying set of data to see how the model is performing
after each epoch. This data will be put the through the
model and a verifying loss will be calculated without any
back propagation like there is for the training data loss.
Rather, this loss will be compared to the training loss to
determine how successful the training was.

IV. TRAINING OUR MODEL

Having created a training loop, a simple neural net-
work, and a set of data, we now need to begin to train
our network. The goal of our training will be to find
the weights and biases of our model that will be able to
determine the presence of a signal at amplitudes simi-
lar to the amplitudes of the noise. To accomplish this,
we run several training trials, changing the inputs to our
training loop until we get a successfully trained model
at a lower signal amplitude than what was previously
recorded. Changing one variable at a time will tell us
how each impacts the overall training as well as what
combination of inputs might be necessary to achieve the
best result for our specific project.

To start training, we need to import the data we simu-
lated from our HDF5 file using the custom dataset class
we created. We do this by using the dataloader function
provided by PyTorch to create training and validating

dataloader objects usable by our training loop. We also
need to choose an optimizer and loss function from the
PyTorch library that we think will function well with our
data. We initially chose, somewhat arbitrarily, to use the
standard gradient descent (SGD) for our optimizer, and
the CrossEntropyLoss function was used as our loss func-
tion throughout the project.

Providing the training loop with these inputs as well
as the number of epochs we want to train over, we can
run the function and get a trained model as our output.
With mostly guessing on the inputs for the training loop
and the properties of our model, we are likely not going
to get a desirable set of weights and biases. This is where
our validating loss becomes useful. In Fig. 2, we see two
training trials with validating losses and training losses
plotted against epoch number. The model is training
properly if we see a graph like Fig. 2a where the validating
loss is decreasing with the training loss. Our network is
learning to accurately identify the data outside the set
being used to train it, indicating it is able to find signals
in data that the model has never seen before. In Fig. 2b,
we see the validating loss increasing as the training loss
decreases. This is known as over-fitting. The network is
learning to recognize the specific time-frequency maps in
the training data rather than learning a general pattern
to be able to find a signal in any data. You can begin to
see this happen in Fig. 2a after the verifying loss reaches
a minimum and the training loss stays close to zero as
well. It is okay here however, since the model was able
to generalize before over-fitting rather than over-fitting
right away.

Along with the loss graph helping us see how success-
ful the training was, we calculate the accuracy of the
model at the epoch with the lowest validating loss. A
large data set is created that is separate from both the
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(a) (b)

FIG. 2: Loss plots of two training attempts. (a), a
successful training attempt; over-training occurs after a
desirable model has been found. (b), a failed training

attempt; over-training occurs right away, before a
desirable model is reached.

training and validating sets, fed into the model with the
parameters that provided the lowest validating loss, and
the percentage that the model gets correct is calculated.

Having everything set up to train our model with the
data we need to train, we can now start the process of
training and refining the inputs to our training loop. We
begin by simulating the strength of the signal to a large
enough amplitude relative to the noise so as to create
a successfully trained model, but not too large leaving
no room for improvement. An accuracy around 80 per-
cent works well here. Each run through the loop after-
wards will have one thing changed in either the model,
optimizer, or data sets, and the new accuracy will be
recorded. If the accuracy is found to be better than a
previous best on any given trial, the amplitude of the
signal will be reduced until the accuracy of the model
is again around 80 percent, and the process is repeated.
It is repeated until the model is able to be successfully
trained at a desired signal amplitude relative to the noise.

V. RESULTS

To begin our training and optimizing of our parame-
ters, we started by running our simulation with a signal
of amplitude 1.5 relative to the Gaussian noise centered
at an amplitude of 0 with a standard deviation of 0.5.
After creating the data sets and running them through
our initial model shown in Lst. 1, we calculated an accu-
racy of 85%. Slowly lowering the signal amplitude over
several trials showed us that we could have an amplitude
of 1.225 and still get an accuracy of 88.15%. The loss
graph for this trial can be seen in Fig. 3a. Here, it is easy
to tell when the model begins to over-fit to the training
data and the verifying loss starts to increase. The lowest
value for the verifying loss was calculated to be at epoch
209; the parameters of the model at this point were used
to calculate the accuracy of the entire trial. Any lower
signal frequency produced a model with an accuracy well
below 80%.

This new data with signal amplitude 1.225 was then

(a)

(b)

(c)

FIG. 3: Loss graphs at each trial where data with a
lower amplitude signal was successfully used to train

our model. (a), signal amplitude of 1.225; model trained
to accuracy of 88.15%. (b), signal amplitude of 1.15;

model trained to accuracy of 70.6%. (c), signal
amplitude of 1; model trained to accuracy of 74.7%.

used in the following trials. Properties of the other inputs
of the training loop were then altered one at a time to
see what would improve our accuracy to above 88.15%.
The first thing we measured that made an improvement
to the accuracy was changing the number of convolu-
tional layers in our model. Increasing it to four layers,
as shown in Lst. 2, produced the best accuracy of 90.6%
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Listing 2: Final Model Class
1 import torch
2 from torch import nn
3 import torch . nn . f u n c t i o n a l as F
4
5 c l a s s Network (nn . Module ) :
6 de f i n i t ( s e l f , MatDim ) :
7 super ( ) . i n i t ( )
8 s e l f . conv1 = nn . Conv2d (1 , 8 , k e r n e l s i z e =7, padding=3)
9 s e l f . conv2 = nn . Conv2d (8 , 8 , k e r n e l s i z e =7, padding=3)

10 s e l f . conv3 = nn . Conv2d (8 , 8 , k e r n e l s i z e =7, padding=3)
11 s e l f . conv4 = nn . Conv2d (8 , 4 , k e r n e l s i z e =7, padding=3)
12 s e l f . l i n = nn . Linear (4� i n t ( (MatDim/4)��2) , 2)
13 s e l f . MatDim = MatDim #al l ows f o r v a r i a b l e s i z e maps
14
15 de f forward ( s e l f , x ) :
16 x = F. r e l u ( s e l f . conv1 ( x ) )
17 x = F. max pool2d (F . r e l u ( s e l f . conv2 ( x ) ) , 2 )
18 x = F. r e l u ( s e l f . conv3 ( x ) )
19 x = F. max pool2d (F . r e l u ( s e l f . conv4 ( x ) ) , 2 )
20 x = x . view (≠1 , 4� i n t ( ( s e l f . MatDim/4)��2) )
21 x = s e l f . l i n ( x )
22 re turn x

when the momentum of the SGD optimizer was increased
to 0.3. With this new model, we were able to reach a sig-
nal strength of 1.15 at an accuracy of 70.6%. The loss
graph of this training trial can be found in Fig. 3b. The
usual curve of decreasing losses followed by over-fitting
is not seen here. We believe this is because the optimiser
was not well calibrated for this specific model and data.
At the moment the loss returns back to around its orig-
inal value and plateaus, the optimizer likely adjusts the
model’s parameters by too large an amount and passes
the local minimum in the loss the optimizer was gravitat-
ing towards. With a better, or better defined, optimizer
that was not found in this study, it is likely much better
results can be achieved here.

The next and final variation we were able to find that
improved our accuracy from this point was the number of
linear layers. Decreasing this number to one, as shown in
Lst. 2 gave us an accuracy of 74.1% at a signal amplitude
of 1.15. With this new model as our final model, we were
able to get the amplitude of our signal down to 1 with an
accuracy of 74.7%. The loss graph can be seen to return
to an expected shape in Fig. 3c. The validating loss dips
down very slightly before the model begins to over-train,
but this is enough to get a satisfactory accuracy at a lower
amplitude than anything that was previously recorded.

Everything else that was changed throughout the many
training trials either prevented training from occurring
at any capacity, produced much lower accuracies, or pro-
duced no major di�erence in accuracies. The things we
found to prevent training from happening were increasing
the stride in the convolutional layers of the model, using
tanh or sigmoid activation functions instead of relu, in-
creasing the size of the time-frequency maps, and chang-

ing the optimiser from SGD to Adam. Decreasing the
batch size from 10, as well as changing the kernel size
from 7 in any way lowered our accuracy. Increasing our
batch size appeared to make no di�erence, so starting o�
with the numbers we used for this and the previous pa-
rameters seem to be fairly lucky guesses. Using a leaky
relu activation function also seemed to make no di�erence
in the training. Changing the padding in each convolu-
tional layer was quite inconsistent when looking at the
accuracies of each trial. With a padding of 0, 1, and 2,
respectively, the accuracy was about the same, the model
did not train at all, and the accuracy was decreased. Al-
though we found only three variables we could change
to improve our results, this could very well be shown to
be true for some of the other variables we tested if more
trials were completed.

VI. CONCLUSION

In the continuing search for di�erent types of gravi-
tational waves, physicist are looking for ways of spot-
ting long-transient waves from newly born magnetars in
LIGO data. In this study, we were able to build a ma-
chine learning model and train it with simulated data to
find these types of signals down to an amplitude of 1 in
time-frequency maps of Gaussian noise centered around
an amplitude of 0 and a standard deviation of 0.5 at an
accuracy of 74.7%.

This, however, has a long way to go before we are able
to achieve accurate results on real LIGO data. The noise
coming from the detectors is not a simple Gaussian for
example. Our data’s noise would have to be simulated to
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reflect the capabilities of the detectors more accurately.
Adding weights to the noise levels based o� the experi-
mental strain values at each frequency of the LIGO de-
tectors is one way to do this. Also, the signal would have
to be simulated as having a varying amplitude, since it is
most likely not going to be detected at a constant value.
After improvements to the simulation are made, many
more training trials will have to be done in order to lower
the signal amplitude to the levels expected in LIGO ob-
servatories. Many trials with constant input parameters
should be done, especially for the changes that seemed to
make little to no impact on the accuracy as described in
Sec. V. Since the parameters of the model are randomly
initialized, each trial is di�erent. Getting averages of ac-
curacies rather than individual ones would be imperative
to improve our model as much as possible.
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