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I. BACKGROUND

A. Gravitational Wave Interferometry

Gravitational waves were first predicted by Albert Ein-
stein in 1916 as “ripples” in space-time due to violent,
energetic processes. The General Theory of Relativity
asserts that massive astrophysical events—colliding neu-
tron stars, orbiting black holes, or supernovae—would
disrupt space-time, causing waves of undulating space-
time traveling at the speed of light to propagate in all
directions [17]. Einstein’s prediction was confirmed in
September 2015 with the first detection of gravitational
waves by the Laser Interferometer Gravitational-wave
Observatory (LIGO) in Hanford, Washington and Liv-
ingston, Louisiana. Since this first detection, the field of
gravitational wave astronomy has grown tremendously,
with e↵orts made to improve the sensitivity of gravita-
tional wave interferometers, shown in Figure 1 below.
Sensitivity improvements increase the range of detec-
tors, enabling the detection of weaker signals from farther
away sources.

FIG. 1: Simplified Gravitational Wave Detector:
Michelson Interferometer with 4 Km Fabry-Perot

Cavities [17].

B. Noise

Interferometric measurements of mechanical displace-
ments in LIGO are limited by a plethora of di↵erent noise
sources, as shown in Figure 2 to the right.

FIG. 2: Noise Limitations in Advanced LIGO [5].

Interferometers’ quantum noise, the purple curve, is
investigated via tabletop optomechanics experiments
at the Laboratoire Kastler-Brossel (LKB). There are
two kinds of quantum noises or uncertainties that are
specific to a laser interferometer: Quantum Shot Noise
(QSN) and Quantum Radiation Pressure Noise (QRPN).
They are consequences of the random fluctuations in the
arrival time of photons, or in other words, fluctuations
in the modulus and phase of the electromagnetic (EM)
field. QSN is caused by fluctuations in the phase of the
EM field, which introduces uncertainty at the detector.
QRPN is caused by fluctuations in the amplitude of the
EM field landing on the interferometer’s test masses,
which induces a mechanical jitter of the masses via
radiation pressure [1][5].

The sum of these two quantum noises is minimal at
an intermediate laser power, as shown in Figure 3 below,
thus enforcing a fundamental limit called the Standard
Quantum Limit (SQL). The SQL is the lowest achiev-
able quantum noise for interferometric measurements of
mechanical displacements [9][27].

FIG. 3: QSN and QRPN as a Function of Laser Power;
Their Intersection Defines the SQL [27].
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C. Fabry-Perot Formalism and Optomechanics

To understand the architecture of gravitational wave
detectors as well as the tabletop experiments done to
study and improve their sensitivities, it is crucial to un-
derstand Fabry-Perot optical cavities and optomechanics.

Optomechanics is a newly emerging field focusing on
the interaction between light and mechanical resonators.
Incoming photon flux landing on a surface transfers mo-
mentum to that surface in the form of radiation pressure.
The radiation pressure force Frad is proportional to the
intensity of the EM field |↵|2 by the radiation pressure
coupling term  as shown by Equation 1 below [5].

Frad = 2~|↵|2 (1)

Optomechanical coupling occurs when that surface is
a mechanical resonator within an optical cavity. The
intracavity power depends on the cavity length which in
turn depends on the mechanical response to the radiation
pressure, which is proportional to the intracavity power.
Thus, a closed loop is formed where light drives the mo-
tion of the mechanical resonator which then varies the
intensity of the light [9]. This coupling is characterized
by the mechanical susceptibility � of the resonator which
is a measure of how prone the resonator is to movement
by light. Position fluctuations �xrad are proportional to
radiation pressure force fluctuations �Frad by � as shown
by Equation 2 below, which of course is all dependent on
the particular mechanical frequency ⌦ [5].

�xrad[⌦] = �[⌦]�Frad[⌦] (2)

Mirrors in Fabry-Perot cavities, and thus in gravita-
tional wave interferometers, move due to the radiation
pressure force of light. We model this coupling with a
mirror fixed to a spring, as shown in Figure 4 below.
This description is valid close to the resonant frequencies,
where only one vibration mode matters, and far from all
resonances, where all modes contribute equally. All opti-
cal experiments at LKB, as well as gravitational wave in-
terferometers, use very reflective mirrors to achieve high-
finesse optical cavities [14].

FIG. 4: Optomechanical Coupling Between Laser Light
at Optical Frequency !cav and Mirror at Mechanical

Frequency ⌦m [14].

D. Squeezed Light

An e↵ective technique to overcome the Standard
Quantum Limit (SQL), and therefore make even more
sensitive interferometric measurements, is by inputting
nonclassical states of light into the optical cavities of
gravitational wave detectors.

An optical cavity is an optomechanical system—a sys-
tem that couples light to mechanical oscillation—so the
Hamiltonian representing the total energy of the EM field
in a cavity takes the form of an ensemble of quantum sim-
ple harmonic oscillators

Ĥ =
X P

2

2m
+

m!
2

2
x
2 =

X
(â†â+
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whose sum are the number operator N̂ = ââ
†, describing

the number of photons in an eigenmode [5].

Light is both a wave and a quantized particle and can
be written as a complex exponential visualized in phase
space, as seen in Figure 5 on the following page. The X
and Y axes refer to the real and imaginary components
of the complex amplitude of the EM field, and also to the
amplitude and phase quadratures X̂2 and X̂1 respectively
(or X and P depending on convention). These quadrature
operators are defined by â and â

†:

X̂1 = â+ â
†

X̂2 = i(â� â
†) (5)

A linear combination of X̂1 and X̂2 describes an arbi-
trary quadrature in phase space as shown by Equations
6 and 7 below [5].

X̂� = âe
�i� � â

i�

(6)

= X̂1cos(�) + X̂2sin(�) (7)

Due to quantum uncertainty, a beam of light consists
of a superposition of phasors, each one representing dif-
ferent possible amplitudes and phases of that light. The
radius of the circle on phase space, as shown in Figure
5, represents a distribution of quasiprobability which can
also be represented in three dimensions in a Wigner di-
agram. The darker purple at the center signifies higher
probability and the fainter purple at the edges signifies
lower probability [5][13].
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FIG. 5: Phase Space of a Light Source and
Accompanying Wigner Diagram [13].

X̂1 and X̂2, or P and X, are Hermitian operators,
so represent physically observable quantities. They do
not commute, however, so they cannot be simultaneously
measured with precise certainty [5].

[X̂1, X̂2] = 2i (8)

The Heisenberg uncertainty principle states that for
two noncommuting observables,

�X̂1�X̂2 � 1 (9)

Squeezed light entails modifying the shape of the light
on phase space so that there is more certainty in either
the amplitude or phase quadrature. Due to the Heisen-
berg relation, when decreasing uncertainty in one quadra-
ture, there is an unavoidable increase in uncertainty in
the other quadrature. This results in a phase diagram
where the coherent circle of quantum uncertainty has be-
come ovular, as shown in Figure 6 to the right [5][9].

FIG. 6: Phase Space of a Vacuum State, a Coherent
State, and a Squeezed State of Light [14].

Light can be squeezed in any direction on the phase
space. Squeezing along the q vector, or phase, is called
phase squeezing, and results in an increase in certainty
of the phase of the light. Squeezing along the p vector,
or amplitude, is called amplitude squeezing, and results
in an increase in certainty of the amplitude of the light
[5][9]. These are shown in Figure 7 below.

FIG. 7: (a) Phase Squeezing and (b) Amplitude
Squeezing [14].

Squeezed states are able to reduce the quantum noise
in optical setups to below the SQL, providing sensitiv-
ity improvements to gravitational wave interferometers
and even improving optomechanics and quantum com-
puting experiments. The injection of squeezed states in
advanced LIGO, for example, has already greatly im-
proved detector sensitivity, increasing the binary black-
hole detection rate by 50% [19].
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E. Frequency-Dependent Squeezing

Frequency-dependent squeezed light (FDSL) refers
to changing the squeezing angle of the light based on
the light’s frequency. QRPN is maximum at the reso-
nant frequency of the optical cavity or mechanical res-
onator. QSN is frequency independent, so when QRPN
lessens outside of the resonator’s bandwidth, QSN domi-
nates. For gravitational wave interferometers specifically,
whose suspension mirrors typically have a low resonant
frequency of about 1 Hz, QRPN dominates at low fre-
quencies while QSN dominates at high frequencies [5].
This is shown in Figure 8 below.

FIG. 8: Frequency Dependence of Quantum Noise in
Michelson Interferometer [5].

To simultaneously reduce QRPN at low frequencies
and QSN at high frequencies, FDSL is necessary. The
angle of the squeezing ellipse is rotated in phase space
depending on the frequency of the light. At low frequen-
cies, amplitude squeezing is best to reduce the dominant
QRPN, and at high frequencies, phase squeezing is best
to reduce the dominant QSN [5]. Frequency-dependent
squeezing allows the SQL to be surpassed at a wider
range of optical frequencies.

In 2020, LIGO researchers generated FDSL in the fre-
quency range of interest for gravitational wave detection,
as shown in Figure 9 on the following page. The colors
represent various squeezing angles, the black line shows
the minimum quantum noise possible in an interferome-
ter using FDSL, and the grey curve shows a comparison
to the injection of frequency-independent squeezed light.

Current upgrades to gravitational wave detectors, like
the A+ LIGO upgrade and Advanced VIRGO Plus, in-
volve installing FDSL sources to benefit from broadband,
sub-SQL noise reduction [19].

II. EXPERIMENTAL METHODS

LKB’s experiment is twofold, with the goal of
eventual combination. First, there is the squeezing
experiment: designing a tabletop frequency-dependent
squeezed light generator. Then there is the membrane ex-
periment: injecting light inside an optomechanical cavity
containing a silicon nitride phononic crystal membrane.
Once these two experiments are optimized, they will be
combined as shown in Figure 10 below. FDSL will be gen-
erated and then sent via optical fibers inside a vacuum
tank within a cryostat that contains the optomechanical
membrane experiment, hence the title “squeezed light in
a cryogenic optomechanical system”. With such a setup,
the goal is to demonstrate how the SQL can be beaten,
which has applications in interferometry, quantum com-
puting, weak force sensing like atomic force microscopy,
and more.

FIG. 10: Future Experiment Combining Optimized
Subexperiments [14].

Relevant experimental methods are detailed in this sec-
tion. First, understanding Gaussian optics is essential
to mode match the cavities. Then, using tabletop opti-
cal equipment, squeezed light and frequency-dependent
squeezed light can be generated. Finally, coupling mem-
branes to optical cavities is of interest in optomechanics
experiments.

A. Gaussian Optics and Mode Matching

Laser beams propagate according to a Gaussian pro-
file. If we intersect a laser beam, we find that each trans-
verse beam cross-section has an optical intensity profile
described by a Gaussian function [9].

However, if the shape of the incoming Gaussian beam
does not match the intrinsic shape of the optical cavity
it enters, higher-order, non-Gaussian modes arise. Mode
matching is the act of matching the shape of the beam to
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FIG. 9: Frequency-Dependent Squeezing at LIGO Frequencies [19].

the shape of the cavity and is done using lenses, which al-
ter the beam curvature. Through mode matching, we can
attain the fundamental TEM 00 Gaussian mode. TEM
00 is the preferred mode for optics experiments as it can
be easily focused into a concentrated spot, something in-
credibly di�cult to do with higher-order modes. A con-
centrated spot is necessary for beams landing on photo-
diodes or entering devices like the OPO.

B. How Squeezed Light is Generated

To generate squeezed light, the carrier light field is
modulated by an external time-varying waveform in ei-
ther phase or amplitude to produce correlated sidebands.

We start with a complex exponential describing the
carrier field.

E(t) = E0e
i!0t (10)

Introducing a periodic amplitude modulation would re-
sult in

EA�Mod(t) = E0e
i!0t(1 +Mcos(!mt)) (11)

⇡ E0e
i!0t(1 +

M

2
e
i!mt +

M

2
e
�i!mt) (12)

where M is the modulation depth and !m is the modu-
lation frequency. Thus, an amplitude-modulated field is
decomposed into a carrier and two sidebands at frequen-
cies !0±!m. This is shown in Figure 11 (a1) to the right,
where the chosen reference is the rotating frame of the
carrier at !0, and the two sidebands rotate in opposite
directions around it [5].

A phase modulation works similarly, resulting in

EP�Mod(t) = E0e
i(!0t+Mcos(!mt)) (13)

⇡ E0e
i!0t(1 + iMcos(!mt)) (14)

⇡ E0e
i!0t(1 + i

M

2
e
i!mt + i

M

2
e
�i!mt) (15)

The result is identical, except the sidebands are shifted
by ⇡

2 from the carrier frequency, as shown in Figure 11
(a2) below.

FIG. 11: Sideband Diagram for (a1) Amplitude and
(a2) Phase Modulation [5].

The time evolution of the modulation sidebands gives
rise to the squeezed light phasor diagram. As time
passes, the sidebands rotate in their respective directions
in phase space given by the sign of their angular fre-
quency. Summing the carrier and sideband vectors re-
sults in the classical phasor evolution, shown in Figure
12 on the following page. For amplitude modulation, 12
(a1), the light changes only along the real axis, so results
in a fluctuating amplitude ↵. For phase modulation, 12
(a2), the light changes only along the imaginary axis, so
results in a fluctuating phase � [5].
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FIG. 12: Time Evolution of Modulation Sidebands with
Resulting Phasor Evolution for (a1) Amplitude
Modulation and (a2) Phase Modulation [5].

Adding the ball of quantum uncertainty to the tip
of the phasors results in a quantum sideband diagram,
which traces out the familiar phasor diagram of squeezed
states shown in Figure 13 below [5].

FIG. 13: Time Evolution of Correlated Sidebands with
Resulting Phasor Diagram for (a) Amplitude Squeezed

and (b) Phase Squeezed Vacuum States [5].

The magnitude of squeezing is determined by how well
the sideband pairs are correlated. A strong correlation—
meaning a small quantum uncertainty distribution and
larger sidebands—results in a more elongated squeezing
ellipse. In Figure 13, (b) is more squeezed than (a).

Experimentally, squeezed light is generated by an Opti-
cal Parametric Oscillator (OPO). An OPO induces phase
or amplitude modulation to create the sidebands and
converts each higher-frequency photon into two lower-
frequency photons using a nonlinear crystal as shown in
Figure 14 below.

FIG. 14: Optical Parametric Oscillator [5].

Each pair of outgoing photons is entangled, which
means the sidebands are correlated. In Figure 11, for
example, if the sideband at !0 + !m rotates, the one at
!0�!m rotates too; if the sideband at !0+2!m, the one
at !0 � 2!m rotates too; and so on.

C. How Frequency-Dependent Squeezed Light is
Generated

To achieve frequency-dependent squeezing,
frequency-independent squeezed light generated by
the OPO is injected into a filter cavity. The filter
cavity is locked o↵-resonance with the light carrier
frequency—a process called laser detuning—which is
shown in Figure 15 below.

FIG. 15: Carrier Sideband Picture of
Frequency-Dependent Squeezing [6].

The blue curve depicts how the phase of the filter cav-
ity changes with respect to frequency: at the cavity’s
resonant frequency !RC , constructive interference occurs
meaning there is 0 phase di↵erence between transmitted
light waves. Shifting the phase response so that reso-
nance does not occur at the carrier frequency !0, rather
at an upper sideband, causes that sideband to be phase
shifted by ⇡ (upon reflection in an optical cavity, light
experiences a ⇡ phase shift), whereas its entangled lower
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sideband pair does not get phase shifted. Since the su-
perposition of each sideband pair results in the phase
space depiction, the filter cavity serves to rotate the an-
gle of squeezing for sideband frequencies within the cavity
linewidth. The magnitude of laser detuning determines
the frequency dependence of the squeezing angle [6].

Putting this all together, a simplified FDSL source is
shown in Figure 16 below. An infrared laser inputs coher-
ent light into an SHG which generates the green pump for
the OPO. The OPO generates correlated sidebands, thus
outputting frequency-independent vacuum squeezed light
which is then combined with an IR bright field to pro-
duce frequency-independent squeezed light, represented
by the yellow oval. This then enters the filter cavity
and becomes frequency-dependent squeezed light, repre-
sented by the tilted pink oval.

FIG. 16: Simplified FDSL Generation [14].

D. Optomechanical Cavity Membranes

Inserting mechanical intermediaries, such as quartz
micropillars or thin silicon nitride membranes, into opti-
cal cavities has become increasingly popular in optome-
chanics research [9]. The interaction between light and
the motion of these mechanical resonators allows us to
better understand radiation pressure e↵ects, to map the
membrane’s mechanical modes, and to study the factors
that define mechanical damping to the environment.

A particularly promising mechanical resonator is the
phononic crystal membrane which is made of a tensioned
thin film of silicon nitride (SiN) that is nanopatterned
with a central defect. This membrane pattern creates a
phononic lattice: a periodic matrix of scatterers. This
arrangement of scatterers is advantageous because it cre-
ates phononic band gaps, which means the membrane
prohibits the propagation of mechanical oscillations in
certain frequency ranges. What’s more, the oscillations
are isolated in the membrane’s central defect, which lim-
its mechanical losses at the edges and allows for longer
oscillation lifetimes. A phononic crystal membrane de-
sign, mechanical bandgap, and out-of-plane mechanical
modes of displacement are shown in Figure 17 to the
right.

FIG. 17: Phononic Crystal Membrane Mechanical
Bandgap and Modes [14].

III. SQUEEZING EXPERIMENT

A. Experimental Setup

The first experiment at LKB is the construction of
a tabletop frequency-dependent squeezer. It has success-
fully produced FDSL in the past, but we are optimizing it
to reduce losses. The setup is shown in Figure 18 below.
It is slightly more complicated than the one in Figure 16,
employing EOMs which lock the optical cavities and a
mode cleaner which attenuates higher-order modes.

FIG. 18: LKB’s Frequency-Dependent Squeezer [14].

B. SHG Alignment and Characterization

This summer, we optimized the beam’s path through
the SHG. To do this, we mode matched the TEM 00
modes of both the IR (� = 1064) and green (� = 532)
light to the SHG cavity. If the IR beam is not mode
matched, the SHG input loses power, and if the green
beam is not mode matched, higher-order modes would be
sent into the OPO, prohibiting it from functioning. Mode
matching the SHG is complicated, however, because the
nonlinear crystal inside the cavity slightly changes the
cavity mode, as shown in Figure 19 on the following page.
The incoming IR light enters the cavity first, so it must
be matched to the mode of the cavity without the crystal.
The green light, which is produced by the crystal, must



9

be matched to the mode of the cavity with the crystal.

FIG. 19: Second Harmonic Generation Cavity
Geometry. Adapted from [15].

To do this, we first removed the crystal and mode
matched the cavity to the IR light by changing the ori-
entations of the input mirrors while sweeping the cav-
ity length and observing the real-time transmission re-
sponse on the oscilloscope. The goal was to maximize
the intensity of the TEM 00 fundamental modes with
respect to the higher-order modes. Upon optimization,
we calibrated and locked the cavity. Figure 20 below
shows the oscilloscope reading of the IR input beam
after being mode matched. The higher-order modes
are of much smaller intensity—in fact, they are barely
discernible—compared to the tall Lorentzian resonance
peaks of the fundamental mode. The blue curve is the
time-varying voltage ramp sent to the piezoelectric actu-
ator that sweeps the cavity length back and forth.

FIG. 20: Resonance Peaks of IR Input Beam in SHG.

Next, we placed the crystal back into the SHG cavity.
To see the green beam’s cross-section, we placed a camera
at the output of the SHG. We then slightly translated
and tilted the crystal in order to match the cavity mode
to the green beam’s TEM 00 mode, visually adjusting to
achieve a bright, clean circle of light on the camera. To be
able to precisely adjust the crystal position, we designed
and 3D printed a custom crystal mount shown in Figure
22 (a) to the right. A cylindrical Thorlabs crystal holder
was a�xed to the plastic mount, and the dials allowed
tilting in two degrees of freedom.

Finally, once both the IR and green beams were aligned
and mode matched, we obtained the SHG’s conversion

e�ciency, shown in Figure 21 below. This was done by
plotting the power of the IR beam on the X axis and the
power of the green beam on the Y axis. Their ratio, the
slope, is the amount of IR photons that are converted
into green photons. The linear fit has a slope of 0.543,
meaning the SHG’s e�ciency is 54.3%, which is su�cient
for squeezing experiments [4].

FIG. 21: Conversion E�ciency of IR to Green Light in
SHG.

Finally, we designed and machined a copper crystal
holder for the OPO as shown in Figure 22 (b) below. The
crystal fits inside the rectangular gap and is surrounded
on all sides by metal to reduce temperature fluctuations
from the environment. This holder was then mounted
and placed inside the OPO cavity.

FIG. 22: (a) Custom 3D Printed Nonlinear Crystal
Mount for SHG and (b) Custom Copper Nonlinear

Crystal Holder for OPO.

C. Future Work and Applications

The next steps are to align, mode match, and lock
the OPO, mode cleaner, and filter cavity, which may re-
quire further engineering of mounts or other components.
Then we can get a final reading of squeezed light. Using
a homodyne oscillator, we would sweep through various
quadrature angles in phase space and measure the noise
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spectra. This requires the optical phase at the homo-
dyne beamsplitter to be controllable at arbitrary phase
angles, which is achieved with an electronic control loop.
Coherent light is a symmetrical quantum noise distribu-
tion, so it would appear as a flat line at or above the SQL
line, while squeezed light would oscillate above and be-
low the SQL line, showing squeezing and anti squeezing.
An example of this is shown in Figure 23 below.

FIG. 23: Measurement of Frequency-Independent
Squeezing [14].

For frequency-dependent squeezed light, measure-
ments in di↵erent quadrature angles in phase space via
homodyne detection would yield di↵erent spectra, but
noise would always vary with optical frequency. An ex-
ample of this is shown in Figure 24 below.

FIG. 24: Measurement of Frequency-Dependent
Squeezing for Laser Detuning of ! = 15.15 MHz at

Di↵erent Quadrature Angles [4].

The grey horizontal line represents the shot-noise limit,
measured by blocking the squeezed beam. The graph is
bounded by traces of frequency-independent squeezing
(lower black line) and anti-squeezing (upper black line).
It can be seen that squeezing degrades at high frequencies

since the sidebands are no longer within the bandwidth
of the OPO cavity.
Developing a tabletop frequency-dependent squeezed

light generator is an important proof of concept, a way
to study and optimize the setup before applying it on a
large scale to gravitational wave interferometers. FDSL
generators also serve as a pump for optomechanical and
quantum computing experiments, which will be discussed
in Section IV next.

IV. MEMBRANE EXPERIMENT

A. Experimental Setup

Next is the membrane experiment, an optomechan-
ics experiment that demonstrates another application of
beating the SQL. We aim to map the membrane’s me-
chanical modes, find the ideal phononic crystal mem-
brane design, and optimize membrane fabrication.
The experimental setup and hardware are shown in

Figure 25 below. The membrane is held on all sides by a
square metal disk and placed between a spherical mirror
M1 and a flat mirror M2. A piezoelectric actuator is
a�xed to the back mirror. The incoming IR laser beam
is sent into the optical cavity containing the membrane
in a Membrane at the Edge (MATE) geometry, and an
FPGA is used to detect the transmitted light and lock
the cavity.

FIG. 25: LKB’s Membrane Experiment [14].

B. Square Membrane Ring Down

First, preliminary tests were performed on a simple
SiN square membrane, an example of which is shown in
Figure 26 on the following page.
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FIG. 26: Square Membrane Image Under Microscope.

A square membrane’s mechanical modes upon excita-
tion at di↵erent frequencies are shown in Figure 27 below.

FIG. 27: Mechanical Modes of Square Membrane [14].

We performed a ring down of the square membrane at
room temperature and atmospheric pressure (no vacuum
chamber yet). A ring down is where light is injected onto
a membrane and the power of the reflected light is mea-
sured. This test shows the resonator lifetime—how long
the membrane sustains vibrations—and is used to ascer-
tain the membrane’s mechanical Q factor. The Q factor
is a measure of the damping of a resonator’s oscillations.
A high Q factor indicates that membrane oscillations are
minimally damped, so the membrane vibrates for a long
time. In contrast, a low Q factor indicates that mem-
brane oscillations are highly damped, so die out quickly.
The Q factor depends on the membrane design and the
particular mechanical mode that is excited [21].

In a ring down, light power changes with time accord-
ing to an exponential decay f(t) = e

��mt. When graphed
in log scale, this becomes g(t) = 1 � �mt, a linear equa-
tion where the slope m represents the exponential decay
factor �m. Nine square membrane ring downs were per-
formed and graphed, their linear fits determined, and
the average linear fit graphed in black in Figure 28 to
the right.

FIG. 28: Reflected Power vs Time During Ring Down
of Square Membrane.

Knowing �m as well as the fundamental mechanical
mode of oscillation (f0 = 847 KHz), we can calculate the
membrane’s Q factor using 16 below [25].

Q =
!m

�m
=

2⇡f0
�m

(16)

=
2⇡(847⇥ 103)

55.56
(17)

= 95, 793 = 9.5793⇥ 104 (18)

Reetz et al. and other optomechanics experiments have
obtained Q factors of SiN membranes via ring down rang-
ing from about 3⇥ 105 to 106 under room temperature.
These values significantly exceed our measured Q factor
because they were obtained under vacuum. This demon-
strates to what extent the introduction of vacuum im-
proves the Q factor of membrane resonators. In both
vacuum and cryostat environments, LKB’s ultimate ex-
perimental goal, Q factors are even higher; Q reaches
6⇥ 107 under 4K [25].

C. Phononic Crystal Membrane Design and
Fabrication

After su�ciently testing square membranes, LKB
will begin testing phononic crystal membranes. What is
advantageous about phononic crystal membranes is that
they have a mechanical bandgap. This allows for oscil-
lations at a single target frequency, reducing parasitic
mechanical modes. The Q factor of this target mode is
therefore very high. Secondly, oscillations are isolated in
the membrane’s central defect. With square membranes,
dissipation of mechanical motion occurs through bend-
ing at the clamping points. But when oscillations are
isolated at the center, the membrane edges do not move,
which allows for what is called soft phononic clamping.
This means there are fewer losses and longer oscillation
lifetimes, sometimes lasting over 100 seconds [28].

The current phononic crystal membrane designs be-
ing fabricated and tested at LKB are the “Lotus” and
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“Dahlia” designs shown in Figure 29 below.

FIG. 29: The (a) Lotus and (b) Dahlia Phononic
Crystal Membrane Designs.

Membranes are 1 mm by 1 mm and must be designed
with a central defect diameter of 6w0 to ensure that the
Gaussian beam hits only the defect, as shown in Figure
30 below. The same MATE cavity geometry is used with
spherical mirror M1 of radius of curvature R, flat mirror
M2, and cavity length L.

FIG. 30: Side View of Gaussian Beam Hitting
Membrane with Defect Diameter of 6!0 in MATE

Cavity Geometry. Adapted from [16].

Diameters of the defect were calculated using Equation
19, which gives the beam waist in this particular cavity
geometry as a function of R and L [16]. An input IR
beam of wavelength � = 1064 nm is used to probe the
membranes.

!0(R,L) =

r
�

⇡

p
L(R� L) (19)

LKB will test three di↵erent cavity sizes, which each
require a membrane defect of a slightly di↵erent diame-
ter, as shown in Table I to the right.

R L Defect Diameter = 6!0

Membrane 1 25 mm 1.7 cm 377 µm
Membrane 2 15 mm 14 mm 214 µm
Membrane 3 10 mm 9 mm 191 µm

TABLE I: Membrane Defect Diameter for Three Cavity
Sizes of Interest.

Membrane fabrication involves a multistep lithography
process in the clean room, beginning with a thin wafer
of silicon (Si) coated on both sides with a thinner layer
of silicon nitride (SiN). A membrane mask created using
Python package DrawPy, as shown in Figure 31 below,
is used to pattern the top SiN surface. The yellow refers
to the fully intact SiN-Si-SiN, the blue partitions are the
exposed Si surfaces where cleaving will occur, and the
magenta squares are the membranes, consisting of only
the top SiN layer with holes arranged in either the Lotus
or Dahlia pattern.

FIG. 31: A 5 cm x 5 cm Membrane Mask Design
Containing 24 Membranes of 1 mm x 1 mm.

The wafer’s top SiN surface is first treated with a layer
of photoresist which, when exposed to UV light, becomes
soluble in a developer. A lithography machine shines
a UV laser on this surface following the pattern of the
mask. The wafer then soaks in the developer, which dis-
solves some of the photoresist, resulting in a partially
exposed SiN surface according to the membrane pattern.
A Reactive Ion Etching (RIE) machine then exposes the
wafer to plasma that reacts only with SiN, etching all
the way down to the Si layer, thus creating the thin SiN
membranes. The wafer’s back SiN layer is then patterned
with a grid of squares that are each aligned with a mem-
brane on the front side. The back side is exposed to
potassium hydroxide, which etches a pyramid in the Si
from the back to the front side, creating a chocolate bar-
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esque pattern of partitions around each SiN membrane
allowing for them to be cleaved from the Si base. The
cleaving process is still being optimized at LKB to allow
for the highest yield of unbroken membranes.

V. FUTURE WORK AND APPLICATIONS

Advancements to this experiment include testing
square membranes under vacuum and then testing
phononic crystal membranes at atmospheric pressure and
under vacuum. We aim to test both the Dahlia and Lotus
designs, comparing their ease of fabrication, Q factors,
mechanical bandgaps, and other properties to ascertain
which design has the best optomechanical performance.
Finally, there is LKB’s ultimate goal of testing phononic
crystal membranes under vacuum, in a cryostat, and with
FDSL.

Inputting FDSL into these membrane cavities accom-
plishes the same thing as in gravitational wave interfer-
ometers: it compensates for the dominance in noise that
occurs around resonant frequencies. It is yet another
demonstration that it is possible to beat the Standard
Quantum Limit. The only di↵erence is that resonance
for the membranes occurs in middle-frequency ranges,
around 1-2 MHz, whereas for GW detectors, resonance
is much lower, around 1-10 Hz [17].

Phononic crystal membranes have numerous appli-
cations in squeezed light experiments, quantum infor-
matics, and microscopy. Coupling between mechanical
membrane resonators and superconducting “fluxonium”
qubits is a promising way to build scalable quantum com-
puters. Long oscillation lifetimes of the membranes mean
long coherence times: more time over which quantum in-
formation is stored. These qubits also provide ways to
test theories of gravity quantization [22]. Finally, scan-
ning force microscopy is achievable with SiN membrane
optomechanical coupling. The standard microscope ge-
ometry can be inverted: samples are placed on a vibrat-
ing membrane surface and the scanning tip is at rest [12].

VI. CONCLUSIONS

This summer, I aided in the optimization of two
optics experiments at Laboratoire Kastler-Brossel: a
frequency-dependent squeezed light generator and a

membrane optomechanics experiment. Understanding
the quantum nature of light and the interaction between
light and mechanical motion is crucial in improving grav-
itational wave detectors, quantum computers, and mi-
croscopy.

In the squeezed light generator, the SHG was aligned,
mode matched, and locked and its conversion e�ciency
was optimized to 54.3%. Devices were designed to im-
prove the crystal positioning in the SHG and OPO in or-
der to ease mode matching. Future work involves mode
matching and optimizing the OPO, mode cleaner, and
filter cavity before making a final measurement of FDSL,
which we expect to be an improvement from LKB’s pre-
vious squeezer. Calculations must also be done to derive
the optimal squeezing angle for each light frequency for
use in the membrane experiment.

In the membrane experiment, a Q factor of 56,793 was
obtained for a square SiN membrane at room temper-
ature and atmospheric pressure. Two phononic crystal
membrane designs—the Lotus and Dahlia—were final-
ized and the first wafers were fabricated in the clean
room. Future work involves testing phononic crystal
membranes in cavities of various sizes at atmospheric
pressure and under vacuum, comparing the two designs
to determine the optimal design for the final cryogenic
optomechanics experiment.
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