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We present a study into using neural networks to predict the detectability of binary black hole
mergers in ground-based gravitational wave detector networks. The probability of detection plays a
key role in characterising selection e�ects, i.e. Malmquist biases, and is an important component in
determining the underlying astrophysical population. In our analysis, we focused on three future
detector networks and built a binary classifier for each scenario. The detector networks correspond
to: i) the fourth observing run (O4, early 2023) with Hanford (H), Livingston (L) and Virgo (V),
ii) the fifth observing run (O5, 2025) at A+ design sensitivity using the HLV network, and iii) O5
but including the Kagra (K) detector, HLVK. By construction, the networks map the intrinsic and
extrinsic parameters (i.e. mass of the binary, mass ratio, redshift) of the binary to an output binary
classification of detectable or not detectable. The networks allow us to incorporate additional physics
that is typically missing in semi-analytical approximations. In particular, we use a state-of-the-art
waveform model, IMRPhenomXPHM, that models precession and higher-order multipoles to produce
the theoretical binary black hole signals. We briefly comment on alternative approaches, such as
a direct regression network for the signal-to-noise ratio, and highlight some of the di�culties in
constructing accurate networks.

I. INTRODUCTION

Gravitational wave (GW) observations provide a unique
means to study the origin and evolution of astrophysical
black holes and neutron stars. To date, we have seen on
the order of 100 compact binaries, consisting of pairs of
neutron stars or black holes [1]. However, it is important
to introduce a metric that describes how detectable or
loud GW signals are. Collecting data on how loud the
theoretical signals are can help with large population
studies, and can give an idea of what to use as selection
e�ects during the observing runs. This detectability is
typically translated into a probability by using the signal-
to-noise ratio (SNR). The SNR is calculated by calculating
the inner product of a GW signal weighted by the power
spectral density (PSD) of the detector. Calculating the
SNR, given intrinsic (the total mass of the binary, the mass
ratio, the spins of each object) and extrinsic (sky location,
polarization, and inclination angle describing how the
binary is oriented relative to the observer) parameters of
the binary is a straightforward and e�cient calculation.
Nonetheless it can still be computationally expensive to
calculate the vast number of SNRs required to predict
selection e�ects for the GW detectors.

Basic neural networks are constructed based on simple
linear equations (neurons) that, when trained properly,
can predict complex mathematical operations extremely
e�ciently. Using a neural network to predict the observ-
ability of GW signals proves to be a useful and fast tool
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Figure 1. Two GW waveforms in the time-domain with the
same total mass and mass ratio, one of which has spins aligned
with its orbital angular momentum (blue) and the other which
does not and therefore is precessing (red).

in determining selection e�ects for future GW observing
runs. In this analysis, we were particularly interested in
the observability of precessing binaries and the impact of
higher order multipoles.

Precession occurs when spins are misaligned with the
orbital angular momentum, resulting in the orientation
of the orbital plane of the binary evolving with time [2].
This happens due to relativistic spin-orbit couplings. If
the spins are preferentially (anti-)aligned with the orbital
angular momentum, then the system will not precess and
the orbital angular momentum direction will be fixed
throughout the inspiral, merger and ringdown of the bi-
nary. A precessing GW signal has a number of unique
characteristic features, such as modulating the maxima
and minima of the amplitude as it evolves towards merger,
shown in Fig. 1.

Higher order multipoles is a concept that comes from
the spin-weighted spherical harmonic decomposition of
the GW signal. The earliest calculations focused on the
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dominant (¸, m) = (2, 2) mode, called the quadrupole.
This is due to the fact that the quadrupole is the leading
order mode of the signal at which we observe gravitational
radiation [3]. However, higher multipoles will be excited
if there is significant mass or spin asymmetry in the
binary, meaning that they can play an important role
in calculating the detectability in future GW detector
networks. Shown in Fig. 2 are the other higher multipoles
of a GW signal as compared to the full signal produce by
all multipoles.

Figure 2. The time-domain waveform of each mode of a GW
signal (blue) in comparison its entire waveform (red).

The likelihood that a signal can be received by a de-
tector also depends on a minimum SNR intrinsic to the
detector, so if this detector minimum is 12, it will only
detect signals that have an SNR greater than 12. Using
neural networks to determine whether or not a signal is
detectable instead of explicitly calculating the SNR could
prove to be more e�cient [4].

II. METHODS

A. Gravitational Wave Data Analysis

A physical quantity called the strain h is the key observ-
able in GW data analysis. The strain h can be written in
terms of a spin-weighted spherical harmonic decomposi-
tion [5]

h = h+ ≠ ih◊ =
ÿ

¸Ø2

ÿ̧

m=≠¸

h¸m ≠2Y¸,m(Ë, „), (1)

where {Ë, „} are the sky location of the source in polar
coordinates. Given an incoming GW with polarizations
h+ and h◊, the real-valued response of a GW detector
can be expressed as

h(t) = F+h+(t) + F◊h◊(t), (2)

where {F+, F◊} denote the antenna response patterns of
the detector [6]

F+ = 1
2 cos 2Â

!
1 + cos2 Ë

"
cos 2Ï ≠ sin 2Â cos Ë sin 2Ï,

(3)

F◊ = 1
2 sin 2Â

!
1 + cos2 Ë

"
cos 2Ï + cos 2Â cos Ë sin 2Ï,

(4)

where Â is the gravitational-wave polarization. In Fig. 1,
we show the real component of h, i.e. h+, in the time-
domain for a prototypical binary black hole. A generic
precessing binary black hole with component masses m1
and m2 is governed by 7 intrinsic parameters: the mass
ratio q = m2/m1 Æ 1 and the dimensionless spin vec-
tors for each black hole ‰i. Here ‰i = Si/m2

i where Si

is the physical spin of the black hole. The total mass
M = m1 + m2 acts as an overall scaling parameter that
shifts the GW frequencies to lower (higher) frequencies
for heavier (lighter) masses. The position and orienta-
tion of the binary are specified with respect to a GW
detector in terms of the right ascension – = Ï, declina-
tion ” = fi/2 ≠ Ë, inclination ÿ, and polarization angle
Â. We combine these parameters into intrinsic and ex-
trinsic parameters denoted by ◊ = {M, q, ‰1, ‰2} and
⁄ = {–, ”, ÿ, Â} respectively.

An important quantity in GW data analysis is the
noise-weighted inner product, or the overlap, defined by

Èh1, h2Í = 2
⁄ Œ

0

df

Sn(f)
#
h̃1(f)h̃ú

2(f) + h̃ú
1(f)h̃2(f)

$
,

(5)

which defines the level of agreement or disagreement be-
tween two waveforms h1 and h2. The match is defined
as

M(h1, h2) = max
t0,Ï0

Èh1, h2Í, (6)
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where {t0, Ï0} are the coalesence time and coalesence
phase respectively. Similarly, the signal-to-noise ratio
(SNR) can be defined by

fl2 = Èh1, h1Í = 4
⁄ Œ

0

|h̃1(f)h̃ú
1(f)|

Sn(f) df, (7)

and quantifies how loud a GW signal is in a detector with
a noise power spectral density Sn(f).

B. Detection Probability

The SNR plays a key role in determining the selection
e�ects for GW observations. In particular, the detectabil-
ity of a binary can be defined as

pdet(◊, z) =
⁄

p(⁄)�[fl(◊, z, ⁄) ≠ flthr]d⁄, (8)

where fl(◊, z, ⁄) is the SNR of the binary given intrinsic
parameters ◊ and flthr is the network threshold SNR that
determines when a binary is detectable. Following [4, 7, 8],
we use a conservative detection threshold for a network
of GW detectors of flN > 12. We note that thresholding
detections based on the SNR does not fully account for
the empirical distribution of triggers generated by the
search pipelines [4, 9, 10] and that the SNR alone is
a poor discriminator for determining the astrophysical
probability of a binary [11].

The detection probability pdet allows us to define the
sensitive spacetime volume V T which quantifies the vol-
ume over which a GW detector network is expected to
detect coalescing compact binaries throughout an observ-
ing run

V T (◊) = Tobs

⁄
pdet(◊, z)dVc

dz

1
1 + z

dz, (9)

where Tobs is the total observing time and Vc is the co-
moving volume. This makes the detection probability
pdet a key ingredient in inferring the population hyperpa-
rameters � that characterize the underlying astrophysical
distribution of binaries. In particular, it is used to calcu-
late the detection fraction [12–15]

›(�) =
⁄

pdet(◊) fi(◊|�) d◊, (10)

where ◊ denotes the binary parameters. The number of
expected detections over a GW observing run is

Nexp = N ›(�), (11)

where N denotes the total number of expected events both
resolvable and unresolvable. Accurately determining pdet
will therefore be important in making unbiased inferences
on the underlying astrophysical population, especially in
the context of precession and higher multipoles [4].

The SNR in Eq. (8) has traditionally been calculated
using a simplification originally introduced in [16]. In this
approximation, the SNR is calculated by weighting the
SNR of a optimally oriented source flopt, i.e. one that is
face-on and overhead, by some angular projection factor
Ê. This approximation is valid when characterizing the
response of a single GW detector to the angular distri-
bution of power for a non-precessing binary using only
the (¸, m) = (2, 2) multipole. This approximation can
be derived by looking at the leading order GW emission
from a compact binary

h+(t) = A(t)1 + cos2 ÿ

2 cos Ï(t), (12)

h◊(t) = A(t) cos ÿ sin Ï(t), (13)

where A(t) is the GW amplitude and Ï(t) the phase. In
particular, we simplify Eq. (1) as [4, 16]

h(t) = ÊA(t) cos [Ï(t) ≠ Ï0] , (14)

where

Ê =
C3

F+
1 + cos2 ÿ

2

42
+ (F◊ cos ÿ)2

D1/2

, (15)

tan Ï0 = 2F◊ cos ÿ

F+ (1 + cos2 ÿ) . (16)

By construction, the angular projection factor has a max-
imum

max
◊,Ï,ÿ,Â

Ê = 1, (17)

that occurs when the source is optimally oriented, i.e.
face-on (ÿ = 0) and overhead (◊ = 0). We can therefore
factorize the SNR into the optimally oriented SNR flopt
and the angular projection factor Ê as

flS(◊, z, ⁄) = Ê(⁄) flS,opt(◊, z). (18)

From Eq. (18), we can calculate pdet using standard Monte
Carlo integration methods. In the single detector limit,
we adopt an SNR threshold of flS > 8 as opposed to
the threshold flN > 12 that we adopt for the network of
detectors.

As noted above, however, this approach towards calcu-
lating the probability of detection for a GW signal relies
on using an optimally oriented binary, is only based on
the SNR predicted by a single detector and is restricted to
non-precessing binaries. In reality, a typical GW detector
network will typically have at least 2 or more detectors
operational at any one time, due to the duty cycle of the
detectors, and we expect astrophysical binaries to have
spins that are both generically oriented, i.e. precessing,
and include higher multipoles beyond the (2, 2)-mode.

Evaluating the SNR at a single point in the parameter
space for a generically precessing binaries can computa-
tionally e�cient but calculating the SNR over an entire
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population of binaries will be computationally expensive.
This all the more problematic when one has to appeal to
Monte Carlo methods to estimate pdet, as per Eq. (8). A
possible alternative strategy, as explored in this paper, is
to construct a neural network to estimate the detectability
of a binary [4]. In this approach, we pre-calculate the
SNRs for a population of binaries and determine which
of these binaries are detectable (fl Ø flthr) and which are
not, e�ectively reducing the problem to a binary classifier.
We therefore train a neural network binary classifier that
e�ectively estimates the term � [fl (◊, z⁄) ≠ flthr] appear-
ing in Eq. (8). A particular advantage of this approach
is that we can train a network using theoretical models
for the observed GW signal that incorporate all relevant
physics, notably precession and higher multipoles. This
circumvents the limitation to the non-precessing 22-only
waveform models as used in Eq. (18). A caveat, however,
is that we must pre-specify the detection threshold be-
fore training the network. If we change flthr, we must
train a new neural network, though we can recycle the
pre-computed SNRs. As detailed above, we assume a
conservative detection threshold of flN > 12 in all neural
networks presented in this paper.

In order to create the training and validation datasets
used by the neural networks, we used a state-of-the-art
waveform model, IMRPhenomXPHM [17–19], that in-
cludes both precession and higher multipoles. The priors
used to construct the binary population assume a uniform
prior on the total mass M œ [2, 500], uniform mass ratios
q œ [0.05, 1.0] and a uniform distribution for the redshift
z œ

#
5 ◊ 10≠3, 2.0

$
. The spin vectors for each black hole

were taken to be isotropic on the sphere and uniform in
spin magnitude, ‰i œ [0, 1]. We used an isotropic prior
for the location of the source on the sky and a prior on
the inclination that was uniform in cos ÿ. The priors for
the polarization Â and coalesence phase Ï were also taken
to be uniform. Training data used for these networks
included sets on the order of 107 binaries, with validation
sets on the order of 105 binaries.

The SNR, as defined in Eq. (7), depends on the PSDs
through Sn(f). As such, we must construct training and
validation data for each detector network considered in
this analysis. We consider three detector networks that
represent probable configurations that will be operating in
the near future. The first network is the 3-detector HLV
O4 network, due to begin operation in early 2023. The
second network is a standard HLV detector network at
projected O5 sensitivities, due to begin operation ≥ 2025.
The final detector network is also and O5 network but now
incorporating the KAGRA detector, HLVK. The PSDs
for all detectors considered in this analysis are shown in
Fig. 3.
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Figure 3. The PSDs used in the O4 (top) and O5 (bottom)
networks. In the O4 neural network, the SNR was calculated
from all three PSDs shown, as it was simulating the HLVK
detector network. In the O5HLV neural network, the KAGRA
PSD was omitted from the calculation, but it is used in the
O5HLVK neural network.

III. EXPLORING NEURAL NETWORKS

A. Introduction to Machine Learning

In order to tackle the high-dimensionality of the param-
eter space, we construct a neural network binary classifier
using TensorFlow [20] with a particular focus on the se-
quential model in Keras framework. In this section, we
briefly review the fundamental operation of a neural net-
work. A neural network is composed of a collection of
connected nodes called neurons. The most basic network
we could consider is a single neuron with a N inputs xi

and a single output y. Each input will be associated a
particular weight wi and the neuron itself can be given
a bias b. In a prototypical feedforward network, the con-
nections are directed from the input to the output of the
neuron. The behaviour of a neuron is characterised by
two operations: i) application of the weights and biases
to the input data and ii) a (non-)linear transformation
determined by the activation function ‡

ŷ(i) = ‡
1

z(i)
2

= ‡
1

wT x(i) + b
2

, (19)

where a typical choice for the activation function is some-
thing like the sigmoid function

‡(z) = 1
1 + e≠z

. (20)

Here ŷ is called the estimator of y. We can now introduce
the loss function, which can be any metric that represents
the error between the network estimated ŷ and the true
values y. For example, when performing regression the
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loss is often taken to be the mean absolute error, the mean
absolute percentage error or the mean squared error. In
the binary case, however, an appropriate loss function to
use is the binary cross entropy [21]

J = 1
N

Nÿ

i=1
L(ŷ(i), y(i)), (21)

where L(ŷ(i), y(i)) is defined as

L(ŷ(i), y(i)) = ≠y(i) log(ŷ(i)) ≠ (1 ≠ y(i)) log(1 ≠ ŷ(i)).
(22)

Of particular importance is that the loss can be used to
inform the network, i.e. make the network "learn". This
is done using stochastic gradient descent algorithms, in
which the parameters of the network are updated based
on the derivatives of the loss in Eq. (23)

◊ = ◊ ≠ –
ˆJ

ˆ◊
, (23)

where ◊ = {w, b}, the weights and biases of the network,
and – is the learning rate. Gradient descent is like trying
to find the minima of a function by experimentally guess-
ing locations along the function for the minima and using
the derivative of the function at each point to determine
the direction that each point should take to get closer to
a minima. If this process was put to motion, we could
treat the loss as a potential such that it would look like
the points were rolling down the function and pooling
in the minima of the potential, like stones rolling down
a hill. In the neural network, the stones would be the
network parameters ◊ and the network would be most
accurate once it reaches the global minima of the loss.
The learning rate – e�ectively determines how quickly
the network adapts to the shape of the loss (or its deriva-
tives). Typically the learning rate is set to a su�ciently
small number, e.g. 10≠2, so that the weights and biases
optimally approach the global minima, producing a more
accurate and stable network. If the learning rate is too
large, then updates to ◊ can be too large and step beyond
or below the values needed for peak accuracy, converging
to suboptimal minima. If, however, the learning rate
is too small, the network can fail to reach the required
accuracy as the weights and biases are evolving too slowly.
This can be particularly problematic if the parameters
become trapped in a suboptimal local minima.

In practice, we use more sophisticated algorithms
within the Keras framework to dynamically update
the learning rate. In particular, we use an adaptive
scheme that reduces the learning rate when improve-
ments to the loss have plateaud, this is provided by the
ReduceLROnPlateau callback in Keras.

B. Optimizing Hyperparameters

To determine the final structure of the neural networks
we optimized over the network hyperparameters. In par-

ticular we explored the role of the network architecture
(i.e. how many layers and how many neurons in each
layer), the standardization of the input data, the acti-
vation functions of each layer, batch size, learning rate,
optimizer and the initializer used for the weights and
biases.

As part of our hyperparameterization optimization, we
explored di�erent network architectures by varying the
number of hidden layers and the number of neurons in each
layer. In the O4-HLV network, the optimal configuration
turned out to be 26 neurons in the first hidden layer, 52
neurons in the second layer, and 104 neurons in the final
hidden layer, which we refer to as the triangle network. As
part of our experimentation, we also tried a basic config-
uration {16, 16}, a rhombus network {26, 52, 104, 52, 26},
a deep and narrow network {13, 13, 13, 13, 13, 13} and a
shallow and wide network {104, 104}.

Standardization is a practice used for neural networks
because large range values are di�cult for them to work
with. For example, in the training data for these networks
that were put together for this project, the range of values
for the total mass of the black hole binary was between 2
and 500 M§. Using minimum-maximum scaling though,
you can reduce the range to [-1,1] using the following

xÕ = ≠1 + 2 x ≠ min(x)
max(x) ≠ min(x) . (24)

All of the data is still there, but with the values reduced to
have these small di�erences the neurons can digest that in-
formation much easier. We also tried using normalization
and reducing the range to [0,1].

Activation functions, like the sigmoid function, were
explored for each layer of the final networks. The final
networks only used the sigmoid activation function in
the output layer, with all the hidden layers using a tanh
activation function

tanh(x) = sinh(x)
cosh(x) = ex ≠ e≠x

ex + e≠x
. (25)

Because such large data sets are used in training neural
networks it is common to use a batch size greater than
one, meaning that rather than looking at a single input
and a single output and determining the loss of that
instance, the network can look at multiple sets of inputs
and outputs and calculate the average loss and apply the
changes based on the average. It can make the network
take more epochs to become accurate, but it takes much
less computing time to use larger batches. For debugging
the neural networks a batch size of 1024 was used to make
the network train faster. Once we were satisfied with all
of the other hyperparameters we reduced it to 128, in
order to increase accuracy at the expense of speed.

We decided on an initial global learning rate of 0.01, but
included a callback function within the tensorflow libary
that monitors whether or not the network is learning
e�ciently, and will change the learning rate as required.

Optimizers are the functions that carry out the gradient
descent, which introduce some techniques to make the
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Training Validation
Network Accuracy Loss Accuracy Loss
O4HLV 0.981 0.042 0.968 0.073
O5HLV 0.972 0.063 0.919 0.062
O5HLVK 0.972 0.062 0.915 0.063

Table I. The accuracy of each neural network in correctly clas-
sifying the binaries in their Training data and their Validation
data, as well as the final loss values.

training smoother. The Adagrad family of optimizers in
TensorFlow use parameter-specific learning rates, that is a
learning rate for each weight and bias, which is determined
by how important each parameter is in achieving accurate
output. The final networks used the Adadelta optimizer
from this group which uses a window of network updates
to optimize the learning rate rather than the accumulation
of all previous updates as per Adagrad.

In the binary classifiers networks, we use the Glorot
algorithm [22] to initialize the weights of the network,
as implemented in TensorFlow. The Glorot algorithm
randomly assigns values on a domain between [≠l, l]
where ≠l is calculated from l =

Ò
6

i+o where i is the
number of neurons used in determining the input of the
neuron which is being initialized, and o is the number
of neurons which directly use the output of the neuron
being initialized. In the first hidden layer of the O4-HLV
network this would be l =

Ò
6

13+52 because the neurons
in this layer’s inputs are the values from the input layer of
13 intrinsic parameters, and the outputs of this layer are
directly used in the second hidden layer of 52 neurons.

IV. CALCULATING THE DETECTION
PROBABILITY FOR O4 AND O5

The final neural networks used the same hyperparam-
eters: the triangle structure, the Adadelta optimizer,
binary cross entropy for its loss function, the Glorot uni-
form initializer, batch size of 128, and initial learning
rate of 0.01. Table I shows the final accuracies of each
of the networks. Calculating pdet with the O4HLV net-
work in place of the Heaviside function of (8) produces
results that would indicate preferred accuracy over the
sub-optimal approximation in Eq. (18). To show how the
neural networks are better at calculating pdet in the case
of precessing waveforms, it is useful to acquire a metric
for how much a binary system is precessing. For this
we use ‰p which is calculated using the spin vectors for
each object in the binary system [23]. The starting point
is to approximately calculate the magnitude of the two
in-plane spin contributions from each of the black holes
in the system [23]

Sp := 1
2(A1S1‹ + A2S2‹ + |A2S2‹ ≠ A1S1‹|), (26)

where A1 = 2 + 3q/2, A1 = 2 + 3/(2q) and q Æ 1. Using
this average, [23] was able to construct a dimensionless
e�ective precession parameter that captures the leading
order e�ects of precession on the waveform

‰p := Sp

A1m2
1

. (27)

In this analysis, we use ‰p as a measure of the amount of
precession in the system. In Fig. 5 and Fig. 6, we show
the di�erence in the estimated pdet between our neural
network, incorporating precessing and higher multipoles,
and the sub-optimal approximation based purely on a
non-precessing waveform using only the 22-mode. We
clearly see that pdet shows notable discrepancies across
the entire precession spectrum with the strongest dis-
agreement occurring at low mass ratios, where the mass
asymmetry in the binary is largest.

V. TOWARDS SNR REGRESSION

A key limitation of the neural networks constructed
here are that they are predicated on a somewhat
ad-hoc choice of the threshold SNR. Recent alternative
approaches that can help circumvent this issue include
constructing a neural network regressor that estimates
the SNR in a given detector network, e.g. [24]. Another
approach, introduced in [25], uses density estimation
on the set of detected binaries to produce a continuous,
generative model for pdet valid for arbitrary subsets
of the binary parameters. In this section, we briefly
highlight initial work towards a neural network regressor
and highlight some of the challenges in training a
network in a high dimensional and highly degenerate
parameter space. Attempting to create a neural network
that performs this function means we had to use a
loss function that was not the BinaryCrossentropy

because the output needed to represent an real number
rather than a category. Experimenting with loss func-
tion between MeanSquaredError, MeanAbsoluteError,
and MeanAbsolutePercentageError proved that
MeanAbsoluteError was the best, though poor results
were still obtained. Also experimenting from the same
group of network structures as before, triangle and
shallow and wide often tied for least error. For optimizers
we tried Adagrad, Adam, Adamax, and Adadelta, but
settled on the last one as with the binary classifiers as
the optimizer of least error. For standardization of data
we ended on min-max scaling for the input parameters as
with the binary classifier, but with normalizing the SNR
intended output, see Eq. (28)

z = x ≠ µ

‡
, (28)

where µ is the mean SNR and ‡ is the standard deviation.
With these hyperparameters in place, including batch
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Figure 4. Loss and Accuracy plots for the three neural networks.

Figure 5. The di�erence in pdet between the binary classifier
calculation and sub-optimal calculation for the binaries used
in the training data for the O4-HLV neural network. Showing
where the binaries lie in terms of mass ratio and ‰p.

sizes of 1024 and initial global learning rate of 0.0001,
and SNRs from the O5-HLV detector network, using the
linear activation function for each hidden layer and the
output layer, the resulting neural network had the final
error of 156.39% and loss 0.004.

Figure 6. Same data as Fig. 5, showing how the binaries most
impacted by the semi-analytical approximation are highly
asymmetric (q æ 0) and typically at heavier masses, where
higher multipoles are louder.

VI. CONCLUSION

We presented an approach that, while not necessarily
novel in its entirety, introduces precession and higher-
order modes to the problem of determining selection ef-
fects in detector networks with neural networks. Three
neural networks were trained to high accuracy to sim-
ulate detector networks in future GW observing runs.
Our results showed that probability of detection is higher
than previously estimated, particularly in the dimension-



8

0 200 400 600 800 1000

epoch

150

160

170

180

190

200
%

er
ro

r

Figure 7. Attempted SNR regression network, displaying that
it is not learning how to calculate SNR values.

space that would indicate excitation of higher-order modes
and across all precession possibility. We hope that these
findings are helpful in quickly and easily determining
spacetime-volume estimates for binary systems with full-
dimensionality, as well as more e�ciently modeling the
population of binaries that could be detected in future ob-
serving runs. The three successful networks can produce
detectable/not detectable outputs given the 13 parame-
ters, and while the concept of a neural network that can
explicitly calculate SNRs was explored in this project,
it certainly deserves more exploration. A successful at-

tempt at such an approach could make the probability of
detection calculations faster, among other applications.
Another such approach that was not explored is a neural
network that directly predicts the probability of detec-
tion, simulating Equation 8. A successful attempt at
this approach would eliminate the need for producing
the probability distribution of extrinsic parameters in the
calculation, and thus heavily reduce computation require-
ments. Limitations on the neural networks presented in
this paper include having to be trained to fit new power
spectral densities for proposed detector networks as they
become published, and lower detector thresholds as the
technology improves. We recommend that these networks
would be used in large injection campaigns, to estimate
detection rates for future observing runs. We believe that
neural networks represent an accurate and technologically
e�cient approach to GW data analysis.
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