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The e↵ective precession parameter �p is a widely used quantity to study precession of the orbital
plane in binary black-hole merger events analyzed studying their gravitational-wave emission by
LIGO and VIRGO groups. Nevertheless, the current definition of �p does not characterize the
precession dynamics properly for all binary black-hole systems and a generalization of the previous
�p was proposed. In this report we explore yet another generalization of the precession parameter
and compare it with the other �p formulations and find (i) no significant di↵erence between the
posterior distributions of the generalized �ps for all current gravitational-wave events and (2) a
⇡ 104 factor improvement in the computation time with the new generalization proposed in this
report, compared with the other proposed generalization .

I. INTRODUCTION

Precession of the orbital plane in binary black-hole
merger events has an important role modulating the
gravitational-wave emitted by these systems [1]. It has
thus been key for the rising field of gravitational-waves
to understand this phenomenon deeply and use it to pro-
duce accurate waveform models.

In addition to this, previous studies have shown that
the formation channel of a binary black-hole has an im-
pact on the spin misalignment of the black-holes with
respect to the orbital angular momentum of the system
[2]. Furthermore, as noted in [1], this spin misalignment
gives rise to orbital plane precession in the binary system.
It is clear that acquiring a deep understanding of this
phenomenon has important astrophysical implications.

To capture this information from gravitational-wave
detections, the precession parameter �heuristic

p was first
introduced by [3]. In current data analysis it is con-
sidered that a confident measurement of �heuristic

p away
from zero with significant information gain from the prior
is a strong indication of orbital plane precession [4].
Nevertheless, �heuristic

p was shown to only capture the
plane precession dynamics for binary black-hole systems
in which one of the spins dominates the precession (The
dominating black-hole is more massive and has higher
spin magnitude). In order to generalize �heuristic

p to all
possible binary black-hole systems Davide et. al. [4]
proposed �averaged

p . Although this new precession pa-
rameter was shown to correctly capture the orbital plane
precession, its computation time is considerably high due
to a non-analytical integral in its formulation. Because
of this, in this report we explore a new generalization
of �heuristic

p which is analytical and compare it with the
previous generalization.

II. QUANTIFYING PRECESSION

A. Defining the precession parameters

Let us define the quantities needed to describe a binary
black-hole merger system. M = m1 + m2 (Total mass
of the system with black-holes with masses m2  m1),
q = m2/m1 (Mass ratio), S1,2 (Spins of the black-holes),
�1,2 (Dimensionless spin magnitudes) and r is the orbital
separation between the black-holes. We employ geomet-
ric units G = c = 1.
We also study or system in terms of the following:

cos ✓1 = Ŝ1 · L̂ (1)

cos ✓2 = Ŝ2 · L̂ (2)

cos�� =
Ŝ1 ⇥ L̂

|Ŝ1 ⇥ L̂|
·
Ŝ2 ⇥ L̂

|Ŝ2 ⇥ L̂|
(3)

Where L̂ is the direction of the orbital angular momen-
tum of the system.
From equation (10) in [4], the orbit-averaged evolution

of the direction of the orbital angular momentum unit
vector, that is, the precession of the orbital plane, has
this form:

�����
dL̂

dt

�����

2

= (⌦1�1 sin ✓1)
2 + (⌦2�2 sin ✓2)

2

+ 2⌦1⌦2�1�2 sin ✓1 sin ✓2 cos��

(4)

Here, ⌦1 and ⌦2 are defined as follows in [4]:

⌦1 =
M2

2r3(1 + q)2
[4 + 3q �

3q�eff

1 + q

M2

L
] +O(

M4

L2
) (5)

⌦2 =
qM2

2r3(1 + q)2
[4q + 3�

3q�eff

1 + q

M2

L
] +O(

M4

L2
) (6)

Where:

�eff =
�1 cos ✓1 + �2 cos ✓2

1 + q
(7)
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From these quantities, [3] defined �p as follows:

�heuristic
p = max(�1 sin ✓1,

⌦2

⌦1
�2 sin ✓2) (8)

Nevertheless, Davide et. al. [4] showed that this defini-
tion does not work for all binary black-hole systems, be-
cause it doesn’t take into account��, which is a quantity
that changes in the same timescale (precession timescale)
as ✓1 and ✓2.

To find a better precession parameter, [4] averaged over
the square root of (4) (normalized by 1

⌦1
) using the fol-

lowing expression:

�averaged
p =

R ���dL̂dt
��� 1
⌦1
(d dt )

�1d R
(d dt )

�1d 
(9)

Here,  (t) is a function that parameterizes the pre-
cession dynamics. For the current analysis, we choose
 = |S1 + S2|, the magnitude of the total spin of the
system.

In order to do the averaging, the three quantities that
describe the system; ✓1, ✓2 and �� have to be expressed
as functions of S. Those equations are in appendix of [4]:

cos ✓1(S) =
1

2(1� q)S1


J2

� L2
� S2

L
�

2qM2�eff

1 + q

�
,

(10)

cos ✓2(S) =
q

2(1� q)S1


�

J2
� L2

� S2

L
+

2qM2�eff

1 + q

�
,

(11)

cos��(S) =
S2

� S2
1 � S2

2 � 2S1S2 cos ✓1(S) cos ✓2(S)

2S1S2 sin ✓1(S) sin ✓2(S)
,

(12)

where J = |S + L| is the magnitude of the total angular

momentum of the system. Then, the
���dSdt

��� term was also

found in such appendix and it was obtained from preces-
sion equations (Same case as (21) in [5]) and is of this
form:

����
dS

dt

���� =
3S1S2M9q5(1� q)

2L5(1 + q)11


1�

qM2�eff

(1 + q)2L

�

⇥
sin ✓1(S) sin ✓2(S)

��sin��(S)
��

S
.

(13)

The
���dL̂dt

��� term is readily obtained by plugging in equa-

tions (10-12) in (4).
The final pieces are the integration limits (maximum

and minimum allowed total spin magnitudes). Other
studies have obtained this quantities in di↵erent ways.
In [6] two ”e↵ective potentials” were defined such that

they enclose all allowed values of S = |S1 + S2|. In [5],
using orbit averaged equations for the evolution of Ŝ1, Ŝ2

and L̂, the evolution equation of S2 was derived (Anal-
ogous equation to (13)). After simpifications, the two
approaches arrive to a cubic polynomial in S2 (Equation
21 in [5] and equation 16a in [6] which has three real
roots, S2

3 < S2
� < S2

+; S
2
� is the minimum allowed total

spin magnitude and S2
+ the maximum. The same result

can be replicated using equation (13).
When applying the (9) with the previous described

quantities, the numerator becomes this integral

Z S+

S�

2S

s
n2S4 + n1S2 + n0

�(S2 � S2
+)(S

2 � S2
�)(S

2 � S2
3)

dS. (14)

The coe�cients of the polynomial in the numerator of
the square root can be easily obtained from (4) and
(10-12). It is remarkable that this integral can only be
solved numerically. That heavily impacts computation
time for each �averaged

p (The denominator of (9), in con-
trast, can be solved analytically). Given that, in aver-
age, the amount of data points in the posterior samples
of all gravitational-wave data release is ⇡ 70000, using
this �averaged

p could be too costly in computation time
for research groups without access to clusters. We thus
explore the slightly modified formulation:

�RMS
p =

vuuuuut

R ���dL̂dt
���
2

1
⌦1

(d dt )
�1d R

(d dt )
�1d 

. (15)

To get a first glance of how this new formulation com-
pares with �averaged

p , we use Jensen’s inequality [7] and
know that < x2 > > < x >2 when x is not a constant.
Taking the square root in both sides,

p
< x2 > > <

x >. This tells us that �RMS
p is always going to be greater

than �averaged
p .

Employing �RMS
p , all the integrals involved in the com-

putation can be solved in terms of complete elliptic in-
tegrals of the first and second kind (K(m) and E(m))
respectively. To simplify the notation, allow us to define:

⇢ =
q
S2
+ � S2

3 (16)

� =
S2
+ � S2

�
⇢2

(17)

These are those integrals and their solutions:

Z S2
+

S2
�

n0q
�(S2 � S2

+)(S
2 � S2

�)(S
2 � S2

3)
dS2 =

2no

⇢
K(�) (18)
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Z S2
+

S2
�

S2n1q
�(S2 � S2

+)(S
2 � S2

�)(S
2 � S2

3)
dS2 =

2S2
3n1

⇢
K(�) + 2n1⇢E(�) (19)

Z S2
+

S2
�

S4n2q
�(S2 � S2

+)(S
2 � S2

�)(S
2 � S2

3)
dS2 =

2n2

3⇢
(2⇢2(S2

+ + S2
� + S2

3)E(�) + (S2
+(S

2
3 � S2

�) + S2
3(S

2
� + 2S2

3))K(�)).

(20)

B. Relation between �RMS
p and �heuristic

p

We do a parallel exercise as the one done in [4] in which
we study equation (15) in the limit that spin-spin cou-
plings can be neglected compared to spin-orbit couplings.
We do this because in that limit the precession dynam-
ics are dominated by just one of the spins and that is
the type of system for which �heuristic

p was intended to
capture the precession dynamics.

In this set-up of binary black-hole merger, S1 and S2

precess with constant velocity and inclination angles over
L. These conditions imply: d✓1

dt = d✓2
dt = d2��

dt2 = 0.
Under this conditions, we can set  (t) = ��, because
that quantity can characterize the precession dynamics
on its own. Then equation (15) becomes:

�RMS
p =

vuuut 1

2⇡

2⇡Z

0

�2
pd�� =

q
(�1 sin(✓1))2 + (�2⌦̃ sin(✓2))2 (21)

For shorter notation, let’s use:

Max = max(�1 sin ✓1,
⌦2

⌦1
�2 sin ✓2) (22)

Min = min(�1 sin ✓1,
⌦2

⌦1
�2 sin ✓2) (23)

�� = Max/Min (24)

We can rewrite �RMS
p in terms of Max and Min:

�RMS
p =

p
Max2 +Min2 (25)

Finally we perform a Maclaurin series on Min and find:

�RMS
p = Max(1 +

��2

2
+O(��4)), (26)

which is very similar to equation (21) on [4] and confirms
that �RMS

p , to first order in Min, reduces to �heuristic
p .

This means that when the precession dynamics is heavily
dominated by one of the spins, the two definitions of �p

are fairly similar, which is exactly what we expect from

�RMS
p if we claim that it generalizes �heuristic

p . For com-

parison, the exact same calculation for �averaged
p yields

[4]:

�averaged
p = Max(1 +

��2

4
+O(��4)) (27)

III. COMPARING PRECESSION

PARAMETERS

A. Testing in simulated data

In order to contrast how the di↵erent precession
parameter formulations behave in di↵erent scenarios
(q,�1and�2), with the aid of the code [8], orbit averaged
simulations of binary black-hole mergers were performed.
The results are encapsulated in Figure 1. It is clear that
the new precession parameter �RMS

p correctly captures���dL̂dt
��� while also smoothing out the precession timescale

variations for all scenarios, both when the precession is
dominated by only one spin (bottom two panels) and
when there is a big contribution from both spins (top two
panels). The agreement between �RMS

p and �Averaged
p is

also remarkable, as it seems that in all mergers studied
the di↵erence is minimal if compared with the di↵erence
between �Averaged

p and �heuristic
p . We see no di↵erence

between the numerical and analytical implementations
of �RMS

p , which tells us that equations (18-20) are cor-
rect. Also, we note that �RMS

p is always bigger than

�averaged
p as expected. Finally, careful inspection of the

red and black (with yellow dashes) curves, reveal some
small fluctuations. This is because of the breaking down
of the timescale hierarchy in binary black holes [4].
Further exploring the di↵erent formulations, we com-

puted 2500 precession parameters of binary black-hole
mergers with isotropically distributed spins (here we
chose L̂ = ẑ) and for di↵erent q,�1 and �2 to see the
statistical behavior of the di↵erent definitions of �p. The
resulting distributions are displayed in Figure 2. We no-
tice that, as expected, �RMS

p is not bounded by 1 (unlike

�heuristic
p ) but by 2; the same as �averaged

p .
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Figure 1. Evolution of �p in the during the inspiral of 4 di↵erent binary black-hole systems. The green line corresponds to��� dL̂dt
��� 1
⌦1

, that is, the most general expression for the precession parameter which maintains all the precession timescale variations;

�averaged
p (red line) and �RMS

p (black line) are intended to smooth out those variations. We also display �heuristic
p (blue line)

and the dashed yellow line also represents �RMS
p , but computed numerically instead of with equations (18-20).

Figure 2. Distribution of di↵erent �p formulations for 2500 binary black-hole mergers with isotropically distributed spins.
Each panel includes parameters computed with di↵erent q,�1 and �2 values. The computation time of �RMS

p (analytical and
numerical) and �heuristic

p are also displayed.
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As explained in [4], the generalized definitions of �p

go over 1 when there is strong influence of the two spins
causing the orbital plane precession. In the plots in Fig-
ure two we also recorded the time it took to produce
the histograms. From these numbers, we can do a first
comparison on computation times (Processor used: In-
tel(R) Core(TM) i5-9300H CPU @ 2.40 GHz). We find
a ⇡ 190 factor improvement in computation time using
�heuristic
p instead of �averaged

p and a ⇡ 185 factor im-
provement when comparing the analytical and numeri-
cal implementation of our new proposed precession pa-
rameter. These are significant improvements, but in or-
der to directly test its applicability to state of the art
gravitational-wave analysis, we shall compare all �p for-
mulations for gravitational wave data.

B. Testing in all GW events

As for the analysis done in [4], only few gravitational-
wave events showed big discrepancies between �heuristic

p

and �averaged
p . Nevertheless, that study was only done

with less GW from the LIGO/Virgo detectors. In this
report we plot the di↵erent �p posterior distributions for
all gravitational-waves on O1, O2.1 and O3 catalogs.

For the O1 catalog, we used the publicly released
samples from [9], which use the IMRPhenomPv2 wave-
form. For catalog O2.1 we used the IMRPhenomX-
PHM waveform model except for GW190425 081805,
for which we used IMRPhenomPv2 NRTidal:HighSpin.
Finally, for catalog O3 we also used the IMRPhe-
nomXPHM waveform for all gravitational-waves, ex-
cept for GW200115 042309, GW200105 162426 and
GW191219 163120 for which an equal mix of the wave-
forms IMRPhenomXPHM and SEOBNRv4PHM are
used [10]. The results are displayed in Figure 3 and
Figure 4. We found that for most events, �RMS

p and

�averaged
p overlap almost perfectly. In order to further

check the agreement, we plotted against each other the
medians of the posterior distribution of both formula-
tions. Figure 5 (left) displays this. As it is readily ob-
served, the trend we see is that the two formulations
yield the same median for all gravitational-wave events
recorded so far. This finding shows that the new preces-
sion parameter �RMS

p can in fact be used interchangeably

with �averaged
p . In Figure 5 (left) there is also a com-

parison between 2 standard deviations of the posteriors
of �RMS

p and �averaged
p . This plot gives us information

about the spread of the posterior, and thus of its uncer-
tainty. We see that, just like the with median, the two
formulations yield identical results.

Apart from the consistency between both formulations,
the most important finding of this study is the improve-
ment of the computation time. We timed the computa-
tion time for each of the posteriors and found that, on
average (Processor used : Intel(R) Xeon(R) Gold 5220R
CPU @ 2.20GHz), using �averaged

p , the speed found was

⇠ 5 computations per second, while using �RMS
p the com-

putation time was ⇠ 3.6⇥ 105 computations per second.
This implies, a 7 ⇥ 104 factor improvement in computa-
tion time.
There are other pieces of information that can be ex-

tracted from the distributions in Figures 3 and 4. As it
was pointed out before, this project follows the steps of
[4]. Here we expanded Figure 4 in that paper and we
found even more events where we see important di↵er-
ences between �averaged

p and �heuristic
p . Some interest-

ing ones which were not studied in the previous study
are listed next. GW190728 060333 which is in Fig 3,
in Fig 4: GW190805 211137, GW190915 235702 and
GW191109 010717. Of course there are other events
which also shown disagreement. In fact there are dis-
tributions in which not only the generalized �ps di↵er
from the heuristic definition, but we also observe that
the posteriors of the generalized definitions extend fur-
ther than one in the x-axis. It would be ideal to check if
those events are mergers in which both black-holes could
contribute greatly to the precession.
Aiming to complement Figure 5 in [4], we recreate the

same plot of medians and spread (2 standard deviations
in this case) of �averaged

p and �heuristic
p posteriors. This

is shown in Figure 5 (right). Our findings in this case are
that the linear trend shown in Figure 5 of [1] is broken for
some more recent gravitational-wave events. In contrast,
the comparison of the spread of the posteriors follows
the same trend as in [4], showing that chiheuristicp un-
derestimates the uncertainty. These findings rea�rm the
importance of employing the generalized definitions of �p

(either �averaged
p or �RMS

p ). As waveform models and de-
tection sensibility get better, we could find more events
with non negligible spin-spin coupling and we should use
improved precession estimators as well.

IV. CONCLUSIONS

A new precession parameter formulation has been
shown to correctly capture the precession dynamics of all
binary black-hole mergers detected by LIGO and Virgo.
It was shown in di↵erent ways (Equation (25), bottom
panels of Figure 1 and several events in Figures 3 and
4), that this new estimator �RMS

p reduces to �heuristic
p ,

the widely used precession estimator, in the limit that
one spin-spin couplings can be neglected (very large or-
bital separations between the black-holes, or one of the
black-holes dominates the precession through his mass or
spin magnitude). We also saw that �RMS

p can be inter-

changed with �averaged
p for calculations of the posteriors

of all current detected gravitational-waves available (Fig-
ure 5 (left)). Furthermore, we found that the definition
proposed in this report greatly enhances the computation
time compared with �averaged

p , although we have seen dif-
ferent improvement factors while computing �ps.
This might be due to the fact that we used di↵erent

processors, one for working with simulated data an one
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Figure 3. �p posterior distributions for O1 and O2.1 catalogs events computed with the three precession parameter formulations
discussed in this report. This plot continues Figure 4 in [4], and the allows to explore more gravitational-wave events where
�heuristic
p is deficient.
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Figure 4. �p posterior distributions for O2.1 and O3 catalogs computed with the three precession parameter formulations
discussed in this report. All the gravitational waves in this figure are new with respect to Figure 4 in [4].
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Figure 5. Left Panel: Comparison of medians and two standard deviations of all posteriors shown in Figures 3 and 4 computed
with �averaged

p and �RMS
p , the agreement is remarkable. Right Panel: Comparison of medians and two standard deviations of

all posteriors shown in Figures 3 and 4 computed with �averaged
p and �heuristic

p , it is remarkable that there is a disagreement
in the medians.

for the real LIGO data. For the simulated data, (using
Intel(R) Core(TM) i5-9300H CPU @ 2.40 GHz) we found
a ⇠ 190 factor enhancement, for the real gravitational-
waves data, (using Intel(R) Xeon(R) Gold 5220R CPU
@ 2.20GHz) we found a ⇠ 3.6⇥ 105 factor improvement.
Also, it is important to note that when working with
the simulated data we only had 2500 computations to do
(See Figure 2), but the average number of computations
for Figures 3 and 4 was 70,000. That being said, the
speed enhancement is still noticeable in any scenario and
we think it would be a useful tool to use, specially for
groups without access to clusters.

Other interesting conclusions we get from this study
is that with more gravitational-waves been detected, we
are finding more binary black-hole mergers in which
�heuristic
p yields considerably di↵erent posterior distribu-

tions if compared with the generalized �p formulations.
As mentioned before, this is yet more interesting since
even if some di↵erences like this where also noticeable in
Figure 4 in [4] ( Comparison of �heuristic

p and �averaged
p

posteriors for less events), the medians of the posteriors
seemed to be identical (Figure 5 of that same paper). In
contrast with that, this report shows di↵erences in the
medians obtained with �heuristic

p and �averaged
p posteri-

ors; the linear trend from Figure 5 in [4] is broken. This
suggests a study in the specific gravitational waves that
broke the linearity of the medians.
Finally, we recognize that there are much more studies

to be done on these estimators. For example, one could
look at the impact of using �RMS

p in population studies.
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