Analyzing Black-Hole Ringdowns with Finite Time Series Inference
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The no-hair theorem states that black holes are characterized entirely by their mass, spin, and
charge. When two black holes collide, the remnant black hole rings down to an oblate spheroid,

shedding all features on an exponential time scale.

Measurements of black-hole ringdowns are

necessary for testing general relativity, and gravitational wave data from LIGO/Virgo observations
are ideal for this purpose. However, ringdown data is challenging to analyze due to its short duration
and location within the signal. Edge effects introduce subtle correlations, which are negligible when
analyzing inspiral/merger signals, but detrimental for ringdown analysis. We implement a recently
developed method to account for these correlations in order to perform an improved ringdown

analysis.

I. INTRODUCTION

According to all known laws of general relativity,
a binary black hole (BBH) merger can be charac-
terized by three stages. A BBH signal begins with
the inspiral phase where the orbits of the two black
holes begin to decay and energy is lost via the emis-
sion of gravitational waves (GW); eventually, the
black holes merge and then finally ring down to a
remnant stage, shedding any other features in the
process so that it is only characterized by its mass
and spin. For a stellar mass sized black hole, this
ringdown phase can happen on the order of a few
milliseconds, and any deviations from this expected
behavior would violate general relativity [1].

Since commencing observing operations in 2015,
Advanced LIGO [2] and VIRGO [3] have detected
~100 BBH mergers [4], creating an ideal dataset to
analyze black-hole ringdowns. However, analyzing
black-hole ringdowns proves technically challenging
because they are both short in duration and oc-
cur near the end of the gravitational-wave signal.
It is common to apply a windowing function when
analyzing a finite stretch of data to mitigate the
Gibbs phenomenon. Specifically, windowing allevi-
ates spectral artefacts that arise as a result of Fourier
transforming finite data; these effects become more
pronounced the shorter the data segment is. An-
other problem that arises when analyzing short sig-
nals is covariance between frequency bins. The com-
bination of these effects provides a source of system-
atic error when we analyze GW ringdown signals.
In this work we perform parameter estimation on
an injected ringdown signal and aim to implement
a likelihood with an updated covariance matrix that
will improve the accuracy of our analysis.
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The remainder of this paper is organized as fol-
lows. In section [[I] we explain in more detail the
challenges in analyzing black-hole ringdowns. In sec-
tion we introduce the methodologies and models
that we we will use in our analyses. In section
we present the results of parameter estimation on
the ringdown portion of a GW150914-like injected
signal. We provide concluding remarks in

II. CHALLENGES OF RINGDOWN
ANALYSIS

A. Windowing Gravitational-wave Data

When we analyze gravitational-wave signals, we
typically multiply the data by a windowing function
to alleviate spectral artefacts caused by the Gibbs
phenomenon [5]. This phenomenon occurs whenever
time-domain data is Fourier transformed, and in
GW data this manifests as a 1/frequency ”shelf” or
"shoulder” in the amplitude spectral density (ASD)
as shown in Figure

Gibbs phenomenon effects worsen the shorter the
duration of the data is, which makes ringdown data
especially vulnerable to the Gibbs phenomenon and
introduces our first challenge. Not only is ringdown
data more affected by the Gibbs phenomenon, but
the process of windowing may also negatively affect
our signal. Since a windowing function essentially
sets the noise of our data to zero at the edges while
preserving the signal in the middle, a signal’s dura-
tion may also affect our ability to window. Win-
dowing an especially short signal such as a BBH
ringdown runs the risk of ”washing out” our data
especially if we use windows with non-zero « values
(eg. Tukey or Hann windows). This is because the
ringdown is placed at the beginning of the piece of
signal we are analyzing, and so the tapering effect of
a windowing function would set the value of the ring-
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Figure 1. Example of shelfing caused by Gibbs phe-
nomenon in average weighted ASD’s of H1 detector dur-
ing O1 (red) and O2 (blue). [6]

down signal itself to almost zero as shown in Figure
2. Therefore, we plan to eventually apply rectangu-
lar windows where a=0 so its tapering nature is not
as severe to mitigate this effect.
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Figure 2. BBH ringdown signal aligned and placed on
top of a Tukey window to demonstrate the coinciding
location of the ringdown and tapering portion of a win-
dow. Multiplying these two would effectively erase the
data we are interested in.

B. Frequency Covariance

Fourier transforming truncated data also intro-
duces frequency covariance, which affects the noise
model we use in our analysis. To calculate the pos-
terior distributions of our parameters, we generally
use the Whittle likelihood function:

L(d0) = N(u=s(6),0 = =) (1)

where s(6) is the strain data and P(f) is the power
spectral density. This likelihood assumes that the
covariance matrix contains only a non-zero diag-
onal that is characterized by the power spectral
density of our signal. However, in real GW sig-
nals, frequency bins are not statistically indepen-
dent and actually have subtle correlations, causing
non-zero off-diagonal elements in the covariance ma-
trix. Figure 3 contrasts these two covariance matri-
ces. Just as with the windowing function problem
explained previously, frequency covariance becomes
more prominent the shorter the signal’s duration is,
which makes ringdown analysis even more challeng-
ing.
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Figure 3. Covariance matrix with only nonzero diagonal
element (top) assumed in likelihood versus covariance
matrix from .0625 of GW150914 data (bottom) with
clear nonzero off-diagonal elements.

This causes inaccuracies for evaluating our poste-
rior distributions, and so we must account for this
new covariance matrix in our likelihood which has
been developed by Talbot et al. 2021 [7].



IIT. METHODS
A. Bayesian Inference

We rely on Bayesian inference to perform param-
eter estimation in this work [8]. Our goal is to calcu-
late the posterior probability distribution of certain
parameters—in this case, the parameters of our ring-
down signal-which is defined by Bayes’ Theorem as:

p(0ja) = 07O 2

Here 6 represents our source parameters, £(d|6) is
the likelihood function, or probability of the detec-
tors measuring data d assuming a model hypothesis,
m(0) is the prior distribution which incorporates any
prior knowledge about our parameters, and Z is the
normalization factor, also known as the evidence,
which is defined as:

z- / £(d|0)m(6)d6 3)

For this work we use the software Bilby, a
Bayesian inference library which infers source prop-
erties from individual signals of compact binary co-
alescences [9].

B. Model of Ringdown Signal

There are two models we must create for our ring-
down parameter estimation: the source model which
we use to generate our injected waveform, and the
recovery model for the parameters we infer. The
former inputs a larger segment of time-domain data
which is truncated to only the ringdown portion. Be-
cause LALSimulation, the library we use to gen-
erate our waveform [10], causes the signal to wrap
around so the ringdown is located at the beginning
of the signal, we must truncate the data at the be-
ginning of the time series. For our injections, we use
the waveform model NRSur7dqg4, a surrogate model
based on numerical relativity which includes spin-
weighted spherical harmonic modes [11]. By taking
in the standard 15 extrinsic and intrinsic parameters
of a BBH merger signal, the source model returns
the cross and plus polarizations of its ringdown sig-
nal portion.

Our recovery model for a ringdown signal can be
approximated by the damped sinusoid function:

h(t)=e~ =)/ sin(2ftm 4 ¢o)ho

where the parameters to be inferred are: tg, the
start time of the ringdown defined in relation to our
relative coalescence time; 7, the damping time; f, the
fundamental frequency; ¢q, the phase; and hg, the
initial amplitude. Figure 4 compares the damped
sinusoid model with an actual generated ringdown
waveform. Of course, this damped sinusoid model is
an approximation because actual ringdown signals
are more complex. According to black hole pertuba-
tion theory, a ringdown comprises of not just a single
damped sinusoid, but rather a superposition of sev-
eral damped sinusoids with complex frequencies that
correspond to different quasinormal modes [12]. Ad-
ditionally, each ringdown mode may have overtones,
which have been explored in previous works such as
Isiet al. 2021 [13] and Cotesta et al. 2022 [14]. Com-
plications also arise concerning when a the merger
portion of a signal truly ends and the ringdown be-
gins. Although perturbation theory tells us that a
GW postmerger signal transitions from a non-linear
to a quasi-linear regime, when this moment exactly
occurs in time requires more research, which the
aforementioned authors have also explored upon.
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Figure 4. Damped sinusoid model (blue) plotted over
actual ringdown waveform (orange) generated using time
domain source model.

IV. GW150914 PARAMETER ESTIMATION

Using our damped sinusoid and time domain
source models, we are able to perform parameter
estimation on a GW150914-like injected signal. We
begin by injecting and recovering the same ringdown
parameters; as Figure 5 shows, we can see that most
of the posterior distributions return close to our
expected values; in particular, the amplitude, fre-
quency, and damping time parameters peak at the



injected values. However, the to result is surpris-
ing as we would expect that parameter to be just as
measurable as the others but seems to be returning
an uninformative distribution.
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Figure 5. Corner plot of ringdown parameter injection
and recovery. Injected values overplotted in orange.

Next, we inject an entire BBH signal and recover
only the ringdown parameters as shown in Figure 6.
At a glance, this result seems to behave similarly to
the previous example. Again, ty appears to be un-
measurable and returning the prior distribution this
time. Otherwise, the rest of our ringdown param-
eters seem to be recovered accurately, and we can
verify this by calculating what our expected values
should be based on the BBH parameters and refer
to a table compiled by Berti et al. 2006 [15].

V. CONCLUSIONS

We have created and implemented both a time
domain source model to generate a ringdown wave-
form, as well as a damped sinusoid model which re-
covers the ringdown parameters from a BBH sig-
nal. Using these two models, we managed to recover
the ringdown parameters from a GW150914-like in-
jected signal. We recovered these ringdown param-

eters both by injecting the same ringdown parame-
ters as well as injecting the standard 15 intrinsic and
extrinsic BBH parameters. We hope to investigate
more into the behavior of the ty parameter.

In the future we hope to calculate and implement
the new covariance matrix with nonzero off-diagonal
elements into our likelihood in order to perform more
accurate ringdown parameter estimation. We will
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Figure 6. Corner plot of BBH signal injection and ring-
down parameter recovery.

ultimately infer ringdown parameters for not just
the first quasinormal mode but for others as well
and attempt to detect overtones to compare these
results with previous findings.
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