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Abstract. Kilonovae are poorly understood due to lack of observations. Models generated

with machine learning can fill in the knowledge gaps. This report is about such a machine

learning model.

1. Introduction

1.1. Kilonovae

A kilonova is a collision that occurs either between two orbiting neutron stars or a neutron star
and a black hole, creating supernova-like ejecta. Like all collisions between orbiting compact
bodies, a kilonova generates gravitational waves. At the same time, a kilonova generates a
lightcurve, making kilonovae a target for observation in the era of multimessenger astronomy.

1.1.1. GW170817 On the 17th of August 2017, during its second observing run, the LIGO-
Virgo detector network observed a binary neutron star inspiral [1] while the electromagnetic
(EM) lightcurve from the corresponding kilonova was also observed [2]. From the gravitational
wave detection, it was possible to put constraints on the masses of the two neutron stars [1].
Knowing the masses allowed physicists to generate lightcurves according to models, notably
the Dietrich-Ujevic model (DU17) which predicts a kilonova’s EM signal based on neutron star
mass [3]. The observed kilonova corresponded to the predicted lightcurve. Using various models
of kilonovae, including the DU17 model and the Metzger 2017 (Me17) model, physicists could
predict the event’s ejecta mass and r-process nucleosynthesis yields [2].

1.2. Kilonova Models

1.2.1. DU17 Model The DU17 model predicts the luminosity of the kilonova given the
constraints on its ejecta by the equation for time at which the region becomes visible,

tc =
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[3], where ⌫max ⌫min are the maximum and minimum speeds of the ejecta, ✓ej and �ej are angles
of ejecta and Mej is the ejecta mass. This allows one to obtain the bolometric luminosity
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�↵ for t > tc and ✏ is the specific heat for energy release due
to radioactive decay. [3]. From here, one can calculate the bolometric magnitude
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[3] The magnitude in each band of the lightcurve (denoted by X) is given by

MX(t) = Mbol(L(t))�BCX(t)

[3], where CX is the magnitude in a given band X, from which one can fit the parameters for
the polynomials.

1.2.2. Me17 Model The Me17 Model has some similarities to the DU17 Model. However, it
calculates the luminocity as

L⌫ =
E⌫

td,⌫ + tlc,⌫

where E⌫ is the thermal energy. [4] It calculates the kilonova’s thermal emission temperature as
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where Rph is the radius. The opacity
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of each layer depends on the temperature
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[4] The model determines the kilonova’s time-evolution and thermal emission properties by the
equation
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[4]

1.3. Machine Learning

Machine learning is a type of computer algorithm that iterates through data over a series of many
epochs to better categorize the data. It allows for data categorization in ways that humans might
not think to, and with data sets that are impractical to categorize by hand.

1.3.1. Normalised Flows Normalised Flows are a subset of machine learning that transform
the input data into a spectrum along a Gaussian curve [5] and transform the curve to get the
best fit for the data.It is necessary for machine learning that results in a lightcurve [5].

1.3.2. Machine Learning for Generating Kilonova Lightcurves Because GW170817 is the only
observation of a kilonova lightcurve found in nature, the machine learning model relies on
data generated through models. It uses the established parameters to generate thousands of
lightcurves for training, which it uses to generate an ’ideal’ lightcurve with the normalised flow
model [5]. The initial algorithm in use during this project generated these lightcurves based on
the DU17 Model [5], but with a few modifications to the code, it could also generate lightcurves
based on the Me17 Model.



2. Motivation

2.1. Neutron Stars

Neutron stars are the dense remnants of supernovae. Their internal equation of state (EOS) is
not entirely known, although given their density, it seems that they consist of a quark-gluon
plasma [6].

2.1.1. Oppenheimer-Volko↵ and Neutron Star EOS In 1939, the physicsists Oppenheimer and
Volko↵ used relativity to correct the equations of an isotropic fluid [6] in attempt to understand
stellar structure [7]. Oppenheimer and Volko↵ assumed spherical symmetry, resulting in the
Einstein field equations
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[7] with pressure p, radius r and energy density ⇢. Combining these field equations with the
Schwartzschild solution yields the equation

dp

dr
= � p+ ⇢(p)
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[7] with energy u. Today this equation is known as the Tolman-Oppenheimer-Volko↵ equation
(Tolmann independently derived this equation around the same time as Oppenheimer and
Volko↵) or the equation of hydrostatic equilibrium. It describes neutrton stars, but in order to
get a closed set of equations for describing the stars’ matter, it requires the EOS, for giving the
energy density in terms of the energy density and specific entropy:

p = p(⇢, S)

, although in these situations the entropy S can often be overlooked [8]. Oppenheimer and
Volko↵ used Fermi statistics to get the EOS
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[7]. However, this EOS gives the neutron star a maximum mass of 0.7M�, which is less than the
Chandrasekhar limit [6], making this EOS useless for describing real-world phenomena. However,
it turned out that their EOS was limited in that it did not account for nuclear interactions,
which would increase the matter’s energy and therefore its mass [6], since energy and mass are
equivalent by the equation

E = mc2

. Since then, a variety of models that take nuclear interactions into account, with di↵erent
equations of state, have been proposed. Each makes di↵erent predictions about internal energy.



Figure 1. A flow chart of the programmes used in the machine learning process. Credit to
Thomas Wallace.

2.2. Kilonovae and Nuclear Astrophysics

Elements heavier than iron, which stars cannot produce through nuclear fusion, can only be
produced through two known processes, the r-process and s-process [2]. Given the abundances
of various types of heavy elements [2], about half of all heavy elements must be synthesized via
the r-process, or rapid neutron capture in a neutron-rich environment [4]. It is thought that
binary neutron star mergers create these environments, and may produce most or all of the r-
processes in the Milky Way [2]. If this is the case, however, the ejecta produced in binary neutron
star collisions must give rise to environments that the r-process occurs in. The lightcurves from
kilonovae can be used to determine the EOS of the ejecta.

2.3. Generating Kilonova Lightcurves

The best way to determine the EOS of the ejecta would be to observe kilonova lightcurves.
Unfortunately, there have not been enough observations to make any conclusions. Thus, models
are the best way to determine the EOS of the ejecta given current resources. Previously, models
were slow to generate kilonova lightcurves, but machine learning allows for the rapid generation
of multiple lightcurves [5].

3. Methods

This project required running code written by Thomas Wallace. The programmes had to be
run in a particular order such that the computer would first generate training data with the
programme DU17Model.py, then prepare the data by combining it into a single file, next train
on the data to study the bands that make up the lightcurve, and finally generate models (figure
1). [5]

3.1. Proof-of-Concept for DU17 Model

First, it was essential to complete a machine learning cycle by running the programmes on the
machine that was to be used for this project. This did require altering some of Wallace’s code
given the specifications of the machine. Notably, since the programme DU17Models.py took too
long to run for the purposes of a proof-of-concept run, lines 199-202 were altered to split into
25*N threads instead of 1*N threads (see Appendix A) so that the programme took less time
to complete at the cost of generating a significant amount of data. Further, later programmes
that generated graphics were altered to use GPU instead of cuda because the machine used for
the proof-of-concept was not cuda-compatible.



Figure 2. Band from Kilonovaf lowtraining.py for DU17 proof-of-concept iteration 0.

3.2. Proof-of-Concept for Me17 Model

The next step was to alter the programmes to use the Me17 model instead of the DU17 model,
using alternative packages from gwemlightcurves. Attepts to alter the code for this model and
run the machine learning on them were successful. Unfortunately, the Me17 code was lost after
running, so machine learning with this model beyond the proof-of-concept will require re-altering
the DU17 code.

3.3. Further Training with DU17 Model

The next step was to train the computer with a more complete data set, achieved by splitting
the data into 1*N threads where the code had previously been altered to split into 25*N threads
(see Appendix A). Such that the programme could split the data into 1*N threads while still
terminating in a reasonable amount of time on the machine being used, the programme was run
through University of Glasgow’s remote terminal cloud computing system Wiay. This generated
a more complete data set, but caused problems in terms of rendering plots graphically.

4. Results

4.1. Proof-of-Concept Results

Because the DU17 model proof-of-concept generated less training data than the other iterations,
the machine learning algorithm had less to work with when generating lightcurves. When the



Figure 3. Band from Kilonovaf lowtraining.py for DU17 proof-of-concept iteration 400.

machine ran the programme Kilonovaf lowtraining.py (see Appendix C), which uses machine
learning on the data produced in DU17Model.py to generate model bands of light, it generated
bands that experienced little evolution over many epochs before the machine determined that it
had reached the optimal band model and terminated (See figures 2-4). Thus the machine could
not produce a meaningful lightcurve prediction as in figure B1 (see Appendix B). The proof-of-
concept for the Me17 model also generated less data than other iterations, so it encountered the
same problems as the DU17 model proof-of-concept, but the machine did not save the bands
generated from this iteration.

4.2. Later Results

Later iterations of this machine learning programme were run on Wiay. Due to some issues in
Wiay, results generated in later iterations of the programme for the DU17 model were never
saved or even made visible to humans. However, the programmes were proven to run in Wiay.

5. Conclusions

Due to the lack of significant results, the only conclusion from this project is that the proof-of-
concept data set generated by splitting into 25*N threads instead of 1*N threads (see Appendix
A) does not work to generate accurate lightcurve models. More research is needed to generate
better model lightcurves.



Figure 4. Band from Kilonovaf lowtraining.py for DU17 proof-of-concept iteration 700. Note
the lack of significant evolution over epochs.

6. Future Work

Possible future work on this project would entail generating complete data sets for both the
DU17 and Me17 models, training the machine separately on each data set, and comparing the
model lightcurves generated from each kilonova model.
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Appendix A. DU17Model.py
Code for programme DU17Model.py. Credit Thomas Wallace. Note places where code was
altered for various purposes, as detailed in Methods.

import numpy as np
from gwemlightcurves.KNModels import table
import gwemlightcurves.EjectaFits.DiUj2017 as du
from gwemlightcurves.KNModels.io.DiUj2017 import calc_lc
import matplotlib
matplotlib.use("TkAgg")
import matplotlib.pyplot as plt
import random
import sys
from threading import Thread
import h5py
import pandas as pd

#creates lightcurve dataframes from input data using the Dietrich Ujevic 2017 model codebase from the gwemlightcurves python package
#to make with other models similair programmes to this one can be made using different parts of the gwemlightcurve package.

def Generate_LightCurve(m1,m2,l1,l2,plot = False):
"""A function to generate lightcurves based off of the two apparent masses of the neutron stars and their tidal deformabilities.

-m1,m2,l1,l2: Float inputs
-plot: boolean for whether or not to plot the generated lightcurves

"""
#initial parameters for the lightcurve
tini = 0
tmax = 11
dt = 0.01
kappa = 10
eps = 1.58e10
alp = 1.2
eth = 0.5

vmin = 0.02

#calculate c1 and c2 from l1,l2
c1 = table.CLove(l1) #Compactness-Love relation for neutron stars
c2 = table.CLove(l2)

#calculate M_ej
mb1 = table.EOSfit(m1,c1)
mb2 = table.EOSfit(m2,c2)
mej = du.calc_meje(m1,mb1,c1,m2,mb2,c2)

#calculate v_ej
v_rho = du.calc_vrho(m1,c1,m2,c2)
v_z = du.calc_vz(m1,c1,m2,c2)
vej = du.calc_vej(m1,c1,m2,c2)

#calculate angles



th = du.calc_qej(m1,c1,m2,c2)
ph = du.calc_phej(m1,c2,m2,c2)

t_d, lbol_d,mag_new = calc_lc(tini,tmax,dt,mej,vej,vmin,th,ph,kappa,eps,alp,eth,flgbct = False)
#t_d is time in days. lbol_d is bolometric luminosity, mag_new is the magnitude which we are interested in
if plot == True:

u = mag_new[0]
g = mag_new[1]
r = mag_new[2]
i = mag_new[3]
z = mag_new[4]
y = mag_new[5]
J = mag_new[6]
H = mag_new[7]
K = mag_new[8]

plt.style.use("bmh")
plt.subplot(121)
plt.plot(t_d,u,label = "u")
plt.plot(t_d,g,label = "g")
plt.plot(t_d,r,label = "r")
plt.plot(t_d,i,label = "i")
plt.plot(t_d,z,label = "z")
#plt.xscale("log")
plt.xticks(np.arange(tini,tmax))
plt.gca().invert_yaxis()
plt.legend(prop={’size’: 6})

plt.subplot(122)
#plt.plot(t_d,y,label = "y")
plt.plot(t_d,J,label = "J")
plt.plot(t_d,H,label = "H")
plt.plot(t_d,K,label = "K")
plt.xticks(np.arange(tini,tmax))
plt.gca().invert_yaxis()
plt.legend(prop={’size’: 6})
#plt.xscale("log")
plt.show()

return([m1,m2,l1,l1],np.array([t_d,mag_new]))#useful to return inputs

def generate_data(data):
"function to generate multiple lightcurves based on a give dataset of inputs"
output = []
for i in np.arange(len(data)):

line = data[i]
if "idlelib" not in sys.modules:

print(f’\r{100*i/len(data):.3f}% finished’,end = ’\r’)
m1,m2,l1,l2 = line



temp_in,temp_out = Generate_LightCurve(m1,m2,l1,l2)
output.append([temp_in,temp_out])

return(output)

def thread_fn(m1,m2,l1,l2,fname,printing = False):
"function used for multithreading the process. Speeds up data creation significantly"
final_data = []
L = len(m1)
for i in np.arange(L):

if printing == True:
if "idlelib" not in sys.modules:#if running in a command or execution window

print(f’\r{100*i/L:.3f}% finished’,end = ’\r’)
else: #if just running from IDLE

if not i % 1000:
print(f’{i}/{L}\t{100*i/L:.2f}%’)

for x in np.arange(1):#if adding noise you would have np.arange(n) for number of points created around the initial.
#When adding noise consideer: m1 > m2 => l1 < l2
#These comments were intiial attempts to add noise
m1_ = m1[i] #+ random.uniform(0,0.01)*m1[i]
m2_ = m2[i] #+ random.uniform(-0.01,0)*m2[i]
l1_ = l1[i] #+ random.uniform(-0.01,0)*l1[i]
l2_ = l2[i] #+ random.uniform(0,0.01)*l2[i]

conditions,lightcurves = Generate_LightCurve(m1[i],m2[i],l1[i],l2[i])
t_d,curves = lightcurves
m1_,m2_,l1_,l2_ = conditions
g = curves[1]
r = curves[2]
I = curves[3]
z = curves[4]

d = np.array([m1_,m2_,l1_,l2_,t_d,g,r,I,z])
final_data.append(d)

final_data = np.array(final_data)
df = pd.DataFrame(data = final_data,

columns = list([’m1’,’m2’,’l1’,’l2’,’time’,’g’,’r’,’i’,’z’]))

df.to_pickle(f"{fname}.pkl")
print(f"{fname} done")
#returning from a thread is quite confusing so it’s better to just save the individual files and recombine later

def thread_fn2(fname,i,printing = False):
"The second threading function which attempts to add noise. Was never used later in the process but in theory should work."

print(f’thread {i} starting’)



final_data = []
data = np.array(pd.read_pickle(fname).values)
t = 0

for d in data:
L = len(data)
t += 1
if printing == True:

if "idlelib" not in sys.modules:
print(f’\r{100*t/L:.3f}% finished’,end = ’\r’)

else:
if not i % 1000:

print(f’{t}/{L}\t{100*t/L:.2f}%’)
m1,m2,l1,l2,t_d,g,r,I,z = d
for j in np.arange(5):

m1_ = m1 + random.uniform(0,0.01)*m1 #m1 > m2 => l1 < l2
m2_ = m2 + random.uniform(-0.01,0)*m2 #add a random value between m2 and m2 - 1%*m2
l1_ = l1 + random.uniform(-0.01,0)*l1
l2_ = l2 + random.uniform(0,0.01)*l2
new_d = np.array([m1_,m2_,l1_,l2_,t_d,g,r,I,z])
final_data.append(new_d)

final_data = np.array(final_data)

#print(final_data[0])
df = pd.DataFrame(data = final_data,

columns = list([’m1’,’m2’,’l1’,’l2’,’time’,’g’,’r’,’i’,’z’]))
df.to_pickle(f"{fname}_noise.pkl")
print(f’thread {i} finished’)

if __name__ == "__main__":#if not being imported to another python file.
"""NB: Data creation took a long time (at least 2 hours if not more if I remember correctly)

it might be possible to take this code and instead of multithreading create data
in sections."""

#Making the first data
filedir = "mass_lambda/mass_lambda_distributions.h5"#the file containing the input m1,m2,l1,l2

d = h5py.File(filedir, ’r’)
data = np.array(d.get(’labels’))
d.close()

m1 = data[:,0]
m2 = data[:,1]
l1 = np.exp(data[:,2])
l2 = np.exp(data[:,3])

N_threads = 16 #depends on processor being used. More threads the better. Can result in overheating though.



Figure B1. Example predicted lightcurve from [5]. Contrast this figure with the results of the
project outlined in this report.

#split the inputs into constituent parts for multithreading.
part_m1 = np.split(m1, 1*N_threads) #change the multiple if you want larger splits, note that if >1 you will not create the full data
part_m2 = np.split(m2, 1*N_threads) #it can be useful to create each part seperatlety though (N_threads = 1, split = 16*N_threads) and set
part_l1 = np.split(l1, 1*N_threads) # i+= n (see line 211) later for whatever segment n you wish to create. This takes longer but prevents
part_l2 = np.split(l2, 1*N_threads) # overheating for a long period of time
threads = list()

for i in np.arange(N_threads):
#launch all the threads
printing = False
if i == 0:

#only have printing = True for the first thread to act as an indication of how long the overal process has
printing = True

#i+=3 #if N_threads = 1 but the split is greater than that then you can add this to build the data for that specific split
x = Thread(target = thread_fn, args = (part_m1[i],part_m2[i],part_l1[i],part_l2[i],

f’DU17_training/DU17_{i}’,printing,))
threads.append(x)
x.start()

for thread in threads:
thread.join()

print("All threads finished")



Appendix B. Wallace Lightcurve Model

An earlier iteration of the machine learning algorithm used generated three example lightcurve
predictions (Figure B1).

Appendix C. Kilonovaf lowtraining.py
Code for Kilonovaf lowtraining.py. Credit Thomas Wallace.

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import os
import time
from matplotlib import cm
plt.style.use(’seaborn-colorblind’)

from glasflow import RealNVP
import torch
from torch import optim

import random
from sklearn.datasets import make_blobs
from sklearn.model_selection import train_test_split
from sklearn.utils import shuffle

from DU17_Model import Generate_LightCurve

# HYPER PARAMS #
#------------------------------#
troubleshooting = False #if True you can enter into trouble shooting loops

#basic hyperparameters for the machine learning
epochs = 2000
learning_rate = 1e-5
test_split = 0.33
batch_size = 1000
patience = 0.1
#for learning scheduling
step_f = 0.33
gamma = 0.01

#which band we are training to
band = ’r’
bandindex = [’g’,’r’,’i’,’z’].index(band) + 1

#idiot variables
axis = 0

# SETUP 1 #
#-----------------------------------#
# #



training_data = os.listdir("DU17_Training") #data is stored in this folder but typically is only one file
loss = dict(train=[],val=[],delta=[]) #initialise loss dict

device = torch.device(’cuda’)#set device as GPU, change cuda to cpu if no GPU installed

# SCALING #
#---------------------------------------------------------------#
# finding the scaling constant to use to normalise the curves #

fname = "Data_Cache/combined.pkl"
data = pd.read_pickle(fname)
data = shuffle(data)

curve = data[band].values
curve = np.vstack(curve)
curve = np.nan_to_num(curve)

scaling_constant = np.min(curve)
print(f’scaling_constant {band}: {scaling_constant}’)

#scaling_constant = -14.019296288484181 # for g band, just incase I lose it

# SETUP 2 #
#---------------------------------------#

fname = "DU17_Training/" + training_data[0]
print(f’file: {fname}’)

data = pd.read_pickle(fname)
data = shuffle(data) #shuffling for fun

curve = data[band].values
curve = np.vstack(curve)#more convenient for manipulation

#set the Flow AI
flow = RealNVP(

n_inputs=len(curve[0]),#based on length of training data
n_transforms =8,
n_conditional_inputs=4,
n_neurons=32,
batch_norm_between_transforms=True)

#send to GPU
flow.to(device)

#optimiser/scheduler setup
optimiser = torch.optim.Adam(flow.parameters(),lr = learning_rate)
scheduler = optim.lr_scheduler.StepLR(optimiser, step_size=step_f*epochs, gamma=gamma)
print(f’Created flow and sent to {device}’)



#Ceck that the curves are correctly normalised
curve = curve/scaling_constant
try:

assert np.max(curve) <= 1.0
except:

print("Curve not normalised correctly, curve max was:\t",np.max(curve))

m1 = data[’m1’]
m2 = data[’m2’]
l1 = data[’l1’]
l2 = data[’l2’]
t_d = data[’time’]
t_d = np.vstack(t_d)[0]
conditional = np.vstack((m1,m2,l1,l2)).T
print(len(m1)," Data points")
m1 = np.vstack(data[’m1’])
m2 = np.vstack(data[’m2’])
l1 = np.vstack(data[’l1’])
l2 = np.vstack(data[’l2’])

# CONVERTING DATA TO TENSORS DO NOT TOUCH #
#--------------------------------------------------------------------------#
# I don’t fully understand what’s happening here so best #
# to just leave it as is, it works #

data = []
curve_train,curve_val,conditional_train,conditional_val = train_test_split(

curve,conditional,test_size = test_split,shuffle = False)

y_train = conditional_train
x_train = curve_train
y_val = conditional_val
x_val = curve_val

x_train_tensor = torch.from_numpy(x_train.astype(np.float32))
y_train_tensor = torch.from_numpy(y_train.astype(np.float32))
train_dataset = torch.utils.data.TensorDataset(x_train_tensor,y_train_tensor)
train_loader = torch.utils.data.DataLoader(

train_dataset, batch_size= batch_size, shuffle = False
)

x_val_tensor = torch.from_numpy(x_val.astype(np.float32))
y_val_tensor = torch.from_numpy(y_val.astype(np.float32))
val_dataset = torch.utils.data.TensorDataset(x_val_tensor, y_val_tensor)
val_loader = torch.utils.data.DataLoader(

val_dataset, batch_size=batch_size, shuffle=False
)



# TRAINING #
#-----------------------------------------#
print("beginning training")
for i in range(epochs):

flow.train()
train_loss = 0.0
for batch in train_loader:

x,y = batch
x = x.to(device)
y = y.to(device)
optimiser.zero_grad()
_loss = -flow.log_prob(x,conditional = y).mean()
_loss.backward()

optimiser.step()

train_loss += _loss.item()
loss[’train’].append(train_loss/len(train_loader))

flow.eval()
val_loss = 0.0
for batch in val_loader:

x,y, = batch
x = x.to(device)
y = y.to(device)
with torch.no_grad():

_loss = -flow.log_prob(x,conditional=y).mean().item()

val_loss += _loss
loss[’val’].append(val_loss / len(val_loader))

scheduler.step()

#Run every 10 epochs
if not i % 10:

try:
print(f"Epoch {i} - train: {loss[’train’][-1]:.4g}"+

f"\t val: {loss[’val’][-1]:.4g}"+
f"\tlr: {scheduler.get_last_lr()[0]:.3g}"+
f"\tLoss: {loss[’val’][-11] - loss[’val’][-1]:.4g}")

try:
loss[’delta’].append(loss[’val’][-11] - loss[’val’][-1])
delta = loss[’delta’][-5:]
if all(d < patience for d in delta):

if all( d > -1*patience for d in delta):
print("Early Stopping")
break

except Exception as e:
pass



except Exception as e:
print(e)
print(f"Epoch {i} - train: {loss[’train’][-1]:.4g}"+

f"\t val: {loss[’val’][-1]:.4g}"+
f"\tlr: {scheduler.get_last_lr()[0]:.3g}")

if i % 50 == 0:
# TESTING THE AI ON RANDOM DATA #
#---------------------------------#
#
test_array = []
indices = []
N = 3 #number of graphs to predict
for n in np.arange(N):

j = random.randint(0,len(m1))
indices.append(j)
temp = random.choice(conditional)
test_array.append(temp)

test_array = np.array(test_array)

cond = torch.from_numpy(test_array.astype(np.float32)).to(device)

Big_Samples = []
N_Samples = 100
cond = torch.from_numpy(test_array.astype(np.float32)).to(device)

#create N samples
with torch.no_grad():

for j in np.arange(N_Samples):
samples = flow.sample(N,conditional = cond)
Big_Samples.append(samples)

for j in np.arange(len(Big_Samples)):
Big_Samples[j] = Big_Samples[j].cpu().numpy()

Big_Samples = np.array(Big_Samples)

final_samples = np.mean(Big_Samples,axis = axis)

std = np.std(Big_Samples,axis = axis)
max_lines = final_samples + 3*std #np.max(Big_Samples,axis = 0)
min_lines = final_samples - 3*std #np.min(Big_Samples,axis = 0)

cond = cond.cpu().numpy()
#print(cond)
cmap =cm.get_cmap(’viridis’) #so we can set the colour of all the plots



for n in np.arange(N):
#print(f"plotting {n}")
col = cmap(n/N)
m1_,m2_,l1_,l2_ = cond[n]
lc = Generate_LightCurve(m1_,m2_,l1_,l2_)[1]
#print(m1_,m2_,l1_,l2_)
lc = np.nan_to_num(lc)
#print(lc[1][bandindex])
plt.plot(lc[0],lc[1][bandindex],"--",label = f"[{m1_:.3g}, {m2_:.3g}, {l1_:.3g}, {l2_:.3g}]",c = col)
plt.plot(t_d,scaling_constant*final_samples[n],"-",ms =4,c = col)
plt.fill_between(t_d,min_lines[n]*scaling_constant,max_lines[n]*scaling_constant,alpha = 0.2,color = col)

plt.gca().invert_yaxis()
plt.title(f’iteration {i}’)
plt.legend()
plt.savefig(f’Model Evolution/iteration {i}.png’)
#plt.show()

plt.clf()
print("Finished training")

# EVALUATION #
#-------------------------------#

#Plot the loss graph
flow.eval()
plt.subplot(211)
plt.plot(loss[’train’] + np.abs(np.min(loss[’train’])), label=’Train’)
#Loss has to have the minimum added because otherwise on a log scale it goes wild when loss is negative
plt.plot(loss[’val’]+ np.abs(np.min(loss[’val’])), label=’Val.’)
plt.yscale(’log’)
plt.xlabel(’Epoch’)
plt.ylabel(’Loss (log(loss + |min|))’)
plt.legend()

plt.subplot(212)
plt.plot(loss[’train’], label=’Train’)
plt.plot(loss[’val’], label=’Val.’)
#plt.yscale(’log’)
plt.xlabel(’Epoch’)
plt.ylabel(’Loss’)
plt.legend()
plt.show()

#plot the Loss graph
plt.plot(loss[’delta’])
plt.xlabel(’Epoch’)
plt.ylabel(’Loss (log)’)
plt.show()



# TESTING THE AI ON REAL DATA #
#-------------------------------#
test_array = []
indices = []
N = 3 #number of graphs to predict
#take N random sets of input
for n in np.arange(N):

i = random.randint(0,len(m1))
indices.append(i)
temp = random.choice(conditional)
test_array.append(temp)

#prep test data
test_array = np.array(test_array)
cond = torch.from_numpy(test_array.astype(np.float32)).to(device)

#Take many Flow predictions to average over for all N samples
Big_Samples = []
N_Samples = 100
cond = torch.from_numpy(test_array.astype(np.float32)).to(device)

#create N samples
with torch.no_grad():

for i in np.arange(N_Samples):
#flow.sample can take N samples quickly so we do this N_Samples times
samples = flow.sample(N,conditional = cond)
Big_Samples.append(samples)

#Get the samples in a workable form for cpu
for i in np.arange(len(Big_Samples)):

Big_Samples[i] = Big_Samples[i].cpu().numpy()

Big_Samples = np.array(Big_Samples)

final_samples = np.mean(Big_Samples,axis = axis)

#create a region of 3 standard deviations.
std = np.std(Big_Samples,axis = axis)
max_lines = final_samples + 3* std
min_lines = final_samples - 3* std

cond = cond.cpu().numpy()

cmap =cm.get_cmap(’viridis’) #so we can set the colour of all the plots



for n in np.arange(N):
col = cmap(n/N) #cmap takes inputs 0->1

#generate and plot lightcurves using the model (The DU17 model imported at top)
m1_,m2_,l1_,l2_ = cond[n]
lc = Generate_LightCurve(m1_,m2_,l1_,l2_)[1]
lc = np.nan_to_num(lc)
plt.plot(lc[0],lc[1][bandindex],"--",label = f"[{m1_:.3g}, {m2_:.3g}, {l1_:.3g}, {l2_:.3g}]",c = col)

#plot the flow predictions
plt.plot(t_d,scaling_constant*final_samples[n],"-",ms =4,c = col)
plt.fill_between(t_d,min_lines[n]*scaling_constant,max_lines[n]*scaling_constant,alpha = 0.2,color = col)

plt.gca().invert_yaxis()
plt.legend()
plt.show()

# SAVE THE MODEL #
#-------------------------------#
# This method of saving needs #
# work, didn’t really work for#
# me. #

models = os.listdir("Models/")
print(models)
i = 0
for m in models:

if m == f’model_{i}_{band}.pth’ :
print(m," Already taken")
i += 1

else:
torch.save(flow,f"Models/model_{i}_{band}.pth")
print(f"Model saved as Models/model_{i}_{band}.pth")

torch.save(flow,f"Models/model_{i}_{band}.pth")
print(f"Model saved as Models/model_{i}_{band}.pth")
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