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Abstract

One of the biggest issues that a↵ects the detection of Gravitational
Waves is the Quantum Noise (QN) caused due to the Heisenberg uncer-
tainty being present in the nature of light. The current techniques to
overcome this problem make use of non-linear crystals and Fabry-Perot
(FP) cavities to produce squeezed light states and reduce the QN below
the so called Standard Quantum Limit. The main problem is this works
well just for certain frequencies of the laser since the QN is frequency de-
pendent while the current squeezed light states are not. Just one state of
squeezed light is not su�cient to achieve the optimum QN reduction for
each frequency and hence the need for frequency dependent squeezed light.
The reason why there is no frequency dependent squeezed light around is
because FP cavities are not able to tune the bandwidths of their resonant
peaks. Nonetheless, there is an alternative and it is to use Three Mirror
(TM) cavities. This report shows how to derive the equations that gov-
ern TM cavities through a matrix formalism and shows that it is possible
to reinterpret a TM cavity as being equivalent to an FP cavity with a
tunable mirror. It is also shown that TM cavities are able to tune the
bandwidths of their peaks by just adjusting the length of their first cavity
between a range of half the wavelength of the resonance frequency of the
cavity. Therefore, showing that in theory TM cavities are able to produce
frequency dependent squeezed light.
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1 Introduction

Currently, one of the biggest limitations towards better strain sensitivity
within the Gravitational Waves (GW) detection is a type of noise called the
Quantum Noise (QN). It is originated from the quantum nature of light itself
where the amplitude and phase quadratures form a pair of conjugate observables
[1]. The uncertainty in these two observables will bring to life two di↵erent
noises, which sum equals the QN. These two noises are known as the radiation
pressure noise (RPN) and the shot noise (SN) and the relation between the
three noises is expressed as

QN = RPN + SN.

More intuitively, the RPN is caused due to the random fluctuations in the
amplitude of the electric field, that translate into a fluctuating force acting on
the interferometer mirrors due to radiation pressure. This fluctuating force,
proportional to the laser power, translates into random mirror displacements,
following the frequency dependence of the mirror mechanical susceptibility. Well
above the resonance frequency of the mirror suspension, the amplitude of the
RPN thus scales as 1/⌦2. On the other hand, the SN is caused due to the random
fluctuations in the phase of the electric field, which is translated into a photon
error counting within the GW detectors. This noise is inversely proportional
to the power of the laser but in its nature is not frequency dependent. The
behaviors of the three noises can be seen in fig. 1. For each frequency ⌦, there
is a single laser power for which the contribution of SN and RPN are equal.
One can show that this laser power is the one that minimizes the total QN.
The corresponding sensitivity, called the Standard Quantum Limit (SQL), is
the optimal sensitivity achievable at the frequency ⌦ with classical light. The
locus of the SQL as a function of frequency is represented as a black dashed line
in Fig. 1. At the particular laser power for which the SN (blue curve) and RPN
(red curve) have been plotted, the SQL is only reached at around ⌦/2⇡ = 50
Hz.

On the other hand, the SQL sensitivity can be exceeded by using so-called
squeezed states of light. In such a state, the phase and amplitude variables
of the field feature non-classical correlations, such that the noise is reduced in
one quadrature, and increased in the conjugate quadrature. This technique,
currently in use in the last generation of gravitational wave interferometers,
exploits a non-linear crystal to generate a frequency-indepedent squeezed state.
In LIGO and Virgo, the phase squeezing that is currently implemented allows
one to reduce the detrimental impact of SN at high-frequency. A single squeezed
state is however insu�cient to beat the SQL over a large frequency span: indeed,
at low frequency, RPN is the dominant noise, such that amplitude squeezing
should be used in this frequency band while phase squeezing should be used at
high frequency.

The role of a rotation cavity is precisely to achieve this frequency-dependent
rotation of the squeezing. The idea is to generate a frequency-independent
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Figure 1: Plots of the QN, RPN and SN for classical light taken from [2]. Here
the frequency dependencies of the noises can be seen.

squeezed-state with a non-linear crystal and to use the response of a Fabry-
Perot cavity to rotate the quadratures of the field in a frequency-dependent
manner. Since the typical corner frequency over which this rotation should
occur is on the order of 100 Hz, the rotation cavity should have an extremely
narrow bandwidth, which requires a cavity that combines a very long length
and a high finesse. In the current design, the length of the rotation cavity is
planned to be 300 m. A feature that would be highly desirable with such a
rotation cavity would be the ability to tune the bandwidth in-situ, such that
the corner-frequency could be quickly adjusted, for instance to match the corner
frequency required for a given laser power. However, adjusting the bandwidth of
a Fabry-Perot cavity usually requires to change the transmission of its mirrors,
a process that is lengthy and requires a physical intervention on the setup.

This International Research Experience (IREU) research focused on the ex-
ploration of the ability of a Three mirror (TM) cavity being able to produce
frequency dependent squeezed light. In the following, the reader will find a dis-
cussion on the essential bits of knowledge that need to be known to understand
the workings of an FP cavity (section 2). Then, section 3 discusses the mathe-
matical formalism used to develop the equations that govern the TM cavity, a
proof that the TM cavity can be reinterpreted as an FP cavity with an e↵ec-
tive mirror and the behavior that this cavity exhibits. The report finalizes by
showing that indeed it is possible to tune the bandwidth of the cavity.
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2 Fabry-Perot cavity

The following, is a discussion of the components, structure, functionality
and characteristics of an FP cavity, how they relate to the physical properties
of the mirrors composing it and some details of the current limitations of the
FP cavity that were not mentioned in the introduction.

2.1 Basic components and structure

FP cavities are made-up of only two optical components which are free space
and spherical mirrors. It is important to mention that even though spherical
mirrors are preferred due to their surface being able to perpendicularly match
at all points of the wave front of Gaussian beams, for the sake of simplicity, this
reports presents an analysis done with plane lossless mirrors and plane waves.
A simplified scheme of a plane mirror and free space components along with
their parameters of interest and system of equations can be found in fig. 2.
There, the variables ain, aout, bin and bout represent the complex amplitudes of
ingoing and outgoing fields and the system of equations show how the outgoing
amplitudes are modified by its respective optical component. This applies to
both of the components in the figure.

Figure 2: (On the left) Scheme of the mirror component, r and t represent
the reflection and transmission coe�cients. (On the right) Scheme of the free
space component where L is the width of the component. The variables in both
diagrams represent the amplitudes of the ingoing and outgoing light fields.

The r and t letters in the mirror scheme (and throughout the whole text)
represent the reflectivity and transmission coe�cients of the mirror. Both of
them are real and positive numbers between 0 and 1. Except in section 3.4
where another convention is used to show the equivalence of the e↵ective mirror
model and the TM cavity. They determine how much of the ingoing light will be
reflected (r coe�cient) and how much of it will be transmitted (t coe�cient). To
get a better grasp of what these coe�cient mean, if it is assumed that bin = 0,
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it is obtained that

r =
bout
ain

and t =
aout
ain

.

Then, since the square of the amplitude is the power of the light field, r and
t can be related to the percentage of reflected power R and the percentage of
transmitted power T by taking the division between the modulus square of the
respective amplitudes. That is

r2 =
kboutk2

kaink2
= R and t2 =

kaoutk2

kaink2
= T.

Bear in mind that these four quantities (r, t, R, T) are unitless. Finally, by the
law of conservation of energy a lossless mirror can be defined as a mirror for
which T +R = 1 implying that

r2 + t2 = 1

Now, the modifications done by the mirror component to the amplitude of
the light is governed by the system of equations

(
aout = rbin + itain
bout = rain + itbin

(1)

which is more or less intuitive except for the appearance of complex number i.
It is placed there to ensure the unitarity of the transformation between input
and output fields without breaking the symmetry between the equations.

The free space component, which also appears in fig. 2, is simpler to un-
derstand. In this case, the light amplitude modifications are dominated by the
(well known) equations of light propagation in free space given by

(
aout = aine�iLk

bout = bine�iLk
(2)

where L is just the length of the free space component and k = !/c is the wave
vector, where ! is the angular frequency of light and c the speed of light in free
space.

Having met the central components, the structure of the cavity is now intro-
duced as a system composed of two parallel mirrors with a vacuum in between
them. This is depicted in fig. 3. The vacuum that happens to be in between
the two mirrors is precisely the free space component and therefore the distance
between the two mirrors is its L parameter. As it will be shown in the next
section, it is this parameter which determines which frequencies will be resonant
within the cavity and it is the t’s of the mirrors which determine the bandwidth
of the cavity. In the diagram of fig. 3, mirror 2 is missing one ingoing light am-
plitude in the bottom right since in practice the FP cavities for GW detectors
only receive inputs from one side.
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Figure 3: Simplified scheme of an FP cavity where L is the distance between
the two mirrors and ri and ti are the reflection and transmission coe�cients of
the ith mirror .

2.2 Functionality and characteristics

FP cavities are ubiquitous for the GW interferometers, where they can be
used as spatial and frequency filters for the laser beam. By accumulating the
position-dependent dephasing over several round-trips, optical cavities are used
to boost the sensitivity of the detectors compared to a standard Michelson
interferometer. Furthermore, these cavities function as optical systems that
can store light of a particular wavelength between the two parallel mirrors.
This functionality is quantified as the intracavity intensity dependent of the
light frequency. The upper plot of fig. 4 shows how this looks for di↵erent
hypothetical FP cavities all with L = 5m, di↵erent T1 = 0.02, 0.09, 0.3 and
each of the them have the same T2 = 0.001. This same figure shows what
are known as the resonance peaks which center occurs at every frequency of
resonance fres=Nc/2L where N is just a positive integer.

The FP cavities can also manage to modify the phases (relative to the in-
coming beam) of their reflected and transmitted light fields. A property very
much needed for the phase squeezing technique. The bottom plot in fig. 4 shows
how the transmitted light field exhibits this change of phase. Notice that for
the three cases that appear in the graph a change of approximately 0 degrees
always occurs at the frequency of resonance. At the same time, notice that
the bandwidth over which the phase shift occurs is given by the width of the
resonance peak. This broadness of the peaks is quantified by the Full Width at
Half Maximum (FWHM) which is two times the Bandwidth of the peaks. All
of this is of no coincidence and this frequency-dependent rotation of the phase
is precisely what is exploited in filter cavities to develop a frequency-dependent
squeezing. Now, a list of several characteristics related to the workings of the
cavity is presented:

• Round-trip time [⌧ ]: The time it takes the light to do one round-trip
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within the cavity.

⌧ =
2L

c

• Free Spectral Range [FSR]: The constant frequency spacing between two
subsequent peaks of resonance.

FSR =
c

2L

• Full Width at Half Maximum [FWHM]: The width of the peak at half its
maximum value.

FWHM =
2FSR

⇡
arcsin

✓
1� r1r2
2
p
r1r2

◆
⇡ FSR

2⇡
(T1 + T2)

• Finesse [F ]: The average number of round trips undergone by light within
the cavity before escaping through one of the mirrors.

F =
FSR

FWHM
⇡ ⇡

1� r1r2
⇡ 2⇡

T1 + T2

• Lifetime [⌧cav]: The time needed for the energy stored in the cavity to
decrease by a factor of 1/e. It is also the typical response time of the
intracavity field to a modification of the input fields.

⌧cav = F⌧

• Bandwidth [BW]: Half the FWHM and it is also the inverse of the ⌧cav.

BW =
FWHM

2
⇡ c

8⇡L
(T1 + T2) =

1

⌧cav
(3)

As a final important characteristic of the cavity, the transmission and reflec-
tion coe�cients of the cavity as a whole can be written as

tFP =
a2
a0

= � t1t2e�iL1k

1� r1r2e�2iL1k
(4)

rFP =
a4
a0

=
r1 � r2e�2iL1k

1� r1r2e�2iL1k
. (5)

3 Three mirror cavity

In this section it is presented how by using a matrix formalism we derived
the reflection and transmission functions for the TM cavity. Then, we provide
a proof that the three mirror cavity system would be equivalent to a two mirror
cavity system with one of its mirror being an e↵ective mirror (fig. 5).
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Figure 4: (upper plot) Intracavity intensity per light frequency.(bottom plot)
The phase rotation per light frequency of the reflected field. The plots were
made for three di↵erent hypothetical FP cavities all with L = 5m, the same
T2 = 0.001 for all the cavities and the T1’s are specified in the plot for each
cavity.

3.1 The proposed solution

As it was mentioned in the introduction, the problem with the current FP
cavities is their inability of changing the transmission coe�cients of its mirrors.
Nonetheless, notice that if one imagines the FP cavity system as one sole e↵ec-
tive mirror, then the transmission and reflection coe�cients (defined as te↵ and
re↵) of this e↵ective mirror would be equivalent to the equations (17) and (18)
respectively. Allowing the tunability of te↵ by just adjusting the distance be-
tween the mirrors of the FP cavity. Then, the goal is to use this e↵ective mirror
along with a normal mirror to create an FP cavity with a tunable bandwidth.
In other words, this would be a three mirror cavity with two of its mirrors very
close together, such scheme appears in fig. 5. Therefore, to understand the
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viability of using a TM cavity to produce frequency dependent squeezed light
its transmission and reflection coe�cients (defined as tTM and rTM) are derived
in the following sections.

Figure 5: Scheme representing how by using a TM cavity one could create an
FP cavity with a tunable bandwidth. Here L1 and L2 represents the distances
between the mirrors. Notice that the trick lies in making L1 ⌧ L2

3.2 Matrix formalism

To obtain the equations that govern the reflection and transmission functions
of the three mirror cavity the matrix formalism that appears (in more detail)
in ref. [1] was used. To understand this technique let us build from the bottom
to the top. As it was previously discussed mirrors and free space are optical
components that receive input light fields and produce output light fields mod-
ified according to their system of equations. Then, these system of equations
can be rearranged in such a way as to obtain a matrix equation that receives as
an input the light fields that are in one side of the component and produces as
an output the light fields that are on the other side of the component. For the
mirror this matrix equation would look like


ain
bout

�
=

i

t


�1 r
�r r2 + t2

� 
aout
bin

�
, (6)

and for the free-space component


ain
bout

�
=


eiLk 0
0 e�iLk

� 
aout
bin

�
. (7)

Then we can define a matrix for each optical component as

Mmirror =
i

t


�1 r
�r r2 + t2

�
and Mspace =


eiLk 0
0 e�iLk

�
. (8)

This formalism is quite advantageous since now the input vector for the
matrix equation of one optical component can be expressed as the output vector
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of its alongside optical component. Then, to obtain the equations that govern a
system one would just need to ”chain” the matrix equations of each of the optical
components of the system. To obtain a more clear view of how this method
works let us take as an example the simple system of two optical components
OC1 and OC2 in fig. 6.

Figure 6: Example of a system with two optical components (mirrors, free space
or both) used to explain the matrix formalism technique. The orange arrows
are the incoming and outgoing light fields of the system, the green boxes are the
optical components OC1 and OC2 and the matrix equations that appear under
each optical component are their respective matrix equations.

Figure 7: Depiction of how the two optical components in fig. 6 are chained
together to produce one matrix equation for the whole system. With the matrix
equation being dependent only of the light field vectors on the extremes of the
system and the matrix of the system being Msystem = MOC1MOC2

There, the two optical components can be mirrors, free space or both. The
goal is to obtain a matrix equation, for the whole system, dependent only on
the light fields that can be found at the extremes of the optical components.
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This system as a whole has two incoming light fields a0 and a3 and two outgoing
light fields a2 and a5 which are the ones at the extremes. The final equation
should be in terms of just these four variables. In the middle of the two optical
components one can find the light fields a1 and a4 which are shared by both
optical components. This sharing then allows us to input the matrix equation
of OC2 into the matrix equation of OC1 and this action is what we call the
chaining. This is depicted in fig. 6. Then, after this substitution we can reduce
our system of two optical components to just one optical component (refer to
fig. 7) with a slightly more complicated matrix of the form

Msystem = MOC1MOC2

We can add a third element to the system and then following the same procedure,
chain its matrix equation to that of the system of already two components. This
would yield a matrix equation for what would be a three component system.
Chain N components and do the same procedure to obtain one matrix equation
for an N optical component system.

3.3 TM cavity transmission and reflection functions

By executing the exact procedure showed in the previous section, we can
obtain the three-mirror cavity matrix:

MTM = Mmirror1Mspace1Mmirror2Mspace2Mmirror3

Where the matrices are the same as those of eq. (8) but they do not necessarily
must have the same parameters. The exact analytical result can be obtained
with the help of the symbolic manipulation package ”SymPy”:

MTM =


A B
C D

�
, (9)

where

A = [(r1 � r2e
2iL1k)r3 � (r1r2 � e2iL1k)e2ikL2 ]

ie�ik(L1+L2)

t2t2t3
,

B = [(r1r2 � e2iL1k)r3e
2ikL2 � (r1 � r2e

2iL1k)]
ie�ik(L1+L2)

t2t2t3
,

C = [(r1e
2iL1k � r2)e

2ikL2 � (r1r2e
2iL1k � 1)r3]

ie�ik(L1+L2)

t2t2t3
,

D = [(r1r2e
2iL1k � 1)� (r1e

2iL1k � r2)r3e
2ikL2 ]

ie�ik(L1+L2)

t2t2t3
.

In these expressions, ri and ti are respectively the reflection and transmission
coe�cients of the ith mirror, L1 is the spacing between mirrors 1 and 2, and L2

the spacing between mirror 2 and 3. Following the same scheme of fig. 7 our
matrix equation would be
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
a0
a6

�
= MTMsystem


a3
0

�
, (10)

then if we substitute eq. (9) into eq. (10) we can manipulate it to obtain the
equations

ttm =
a3
a0

=
1

A
= � it1t2t3eik(L1+L2)

(r1 � r2e2ikL1)r3 � (r1r2 � e2ikL1)e2ikL2
(11)

and

rtm =
a6
a0

=
C

A
=

(r1e2ikL1 � r2)e2ikL2 � (r1r2e2ikL1 � 1)r3
(r1 � r2e2ikL1)r3 � (r1r2 � e2ikL1)e2ikL2

(12)

where ttm is the transmission function and rtm the reflection function of the of
the TM cavity.

3.4 Equivalence between the e↵ective mirror model and
the TM cavity

Another way to derive equations (11) and (12) would be to use a convention
in which the mirror component system of equations would be expressed as

(
aout = r0bin + tain
bout = rain + t0bin

(13)

where this time, r, t and r0, t0 are the reflection and transmission coe�cients
of the left and right sides of the mirror. With the exception that any of the
four coe�cients can be complex but, their absolute value must still be between
0 and 1. Then this system would have a scattering matrix

S =


t r0

r t0

�
(14)

and to assure its unitarity, it is decided that

r0 = r and t0 = �t

where the line on top of r and t means the complex conjugate of the variable.
Then, this new convention would cause the transmission and reflection functions
of the FP cavity to transform into

tFP =
t2t1e�ikL

1� r0
1
r2e�2ikL

(15)

rFP =
r0
1
� r2e�2ikL

1� r0
1
r2e�2ikL

(16)

.
Then, referring to the e↵ective mirror scheme in fig. 5, the coe�cients
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te↵ =
�it1t2e�iL1k

1� r1r2e�2iL1k
(17)

r0
e↵

=
r2 � r1e�2iL1k

1� r1r2e2iL1k
(18)

can be assigned to the e↵ective mirror and then by exchanging t1 and r0
1
by teff

and r0eff , and t2 and r2 by t3 and r3 in eqs.(16) and (15) one would obtain

tTM =
teff t3e�ikL2

1� r0effr2e
�2ikL2

(19)

rTM =
r0eff � r3e�2ikL2

1� r0effr3e
�2ikL2

(20)

which in fact are the transmission and reflection coe�cients of the TM cavity.
This interpretation gives us a much better intuition than the full formula

(11) on the functioning of the three mirrors cavity. Indeed, the first sub-cavity of
length L1 can be thought of as an input mirror for the long cavity of length L2.
Furthermore, formula (17) shows that the transmission of this e↵ective input
mirror can be tuned in-situ by changing the length L1 of the first sub-cavity.

3.5 Practical parameter tuning for the TM cavity mirrors

Not any value of T ’s and L’s would be useful to make an FP cavity work and
the same applies to the TM cavity. To make an FP cavity work (particularly
near the high finesse approximation) T1 and T2 must be very small and at the
same time T2 < T1. The same would apply to the e↵ective mirror scheme in
fig. 5, in that case it can be said that |te↵ |2 = Te↵ and hence to achieve the
high finesse approximation Teff and T3 will have to be very small and T3 < Te↵ .
Then using these two variables and eq. (3) the BW for the TM cavity resonance
peaks would be

BWTM ⇡ c

8⇡L2

(Te↵+T3) =
c

8⇡L2

✓
T1T2

1� 2r1r2 cos(2L1k) + (r1r2)2
+ T3

◆
(21)

where now it is explicit that the bandwidth of the cavity will be dependent on
L1 and k. Then it is easy too see that for a given fres the maximum value of
the BWTM will occur when Te↵ gets maximized which occurs when the short
cavity is in resonance. That is, the condition 2L1k = 2N⇡ is fulfilled and this
implies that

Lmax

1
=

Nc

2fres
= N

�res

2
. (22)

By the same analysis, the minimum value of BWTM will occur when Te↵ is
minimized, which occurs when the short cavity is in anti-resonance and this
happens when the condition 2L1k = (2N +1)⇡ is fulfilled and this implies that
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Lmin

1
=

✓
N +

1

2

◆
c

2fres
=

✓
N +

1

2

◆
�res

2
(23)

where N is an integer and �res = c/fres. Then to tune the bandwidth of the
cavity it would be as simple as to tune L1 to any intermediate value between
Lmax
1

and Lmin
1

. The techniques that can be employed for the stabilization of
such an optical system with a precision greatly exceeding 1 micron goes beyond
the scope of this work.

To see the e↵ects on the bandwidths of the peaks by varying L1 an example
was generated (fig. 8) by setting the wavelength of resonance to be � = 1094nm.
The parameters of the FP and TM cavities were set up as they appear in tables
(1) and (2) respectively. These parameters were selected without any particular
reason other than they managed to highlight the extreme changes that can be
achieved in the bandwidths of the peaks by doing very small changes in L1.
In the graphs of fig. 8 there appears a comparison between an FP cavity of
length L=2.735km, a TM cavity with cavity lengths of Lmax

1
=547nm=�res/2

and L2=2.735km and a TM cavity with lengths of Lmin
1

=820.5nm=1.5�res/2
and L2=2.735km. These graphs clearly show how the bandwidths of the peaks
drastically changed caused by the manipulation of the L1 parameter. In that
same figure, the orange graph in the bottom show how the BWTM of the peaks
will depend on the parameter of L1. It was generated by varying L1 between the
range of [0.5Lmax

1
, 1.5Lmax

1
] at constant k = 2⇡fres

c within equation (21). The
red and green constant lines in the bottom of the figure shows the maximum
and minimum achievable BWTM values. Lastly, the blue constant line is the
BWFP of the comparative FP cavity which has no way of being changed. This
graphs explicitly show the advantage of the TM cavity over the FP cavity.

FP cavity parameters

L [km] 2.735
T1 0.2
T2 0.005

BW [Hz] 894.082

Table 1: Parameters that describe the graph of the reflection function of the FP
cavity in fig. (8). The last parameter was calculated by using the equation (3)
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TM cavity parameters

Lmin
1

[nm] 820.5= 1.5�res
2

Lmax
1

[nm] 547=�res
2

L2 [km] 2.735
T1 0.09
T2 0.02
T3 0.1

BWmin [Hz] 438.21
BWmax [Hz] 2971.21

Table 2: Parameters that describe the graphs of the reflection function of the
TM cavity in fig. (8). The last two parameters are calculated by using the
equation (21) and the corresponding Lmin

1
and Lmax

1
.

Figure 8: (Upper graphs) The blue line shows the reflection function of an FP
cavity with the parameters that appear in table 1. The green line shows the
reflection function of a TM cavity with the parameters that appear in table 2
and particularly with L1 = Lmin

1
. The same goes for the orange line except that

this time L1 = Lmax
1

. (Bottom graphs) Blue constant line is the BWFP where
value can be found in table 1. The orange line is the BWTM as a function of L1

and with constant k = 2⇡fres
c . The green and red constant lines mark the max.

and min. achievable values for BWTM.
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4 Conclusion

Currently, the state of the art to reduce the QN in the gravitational waves
detection is to use FP cavities with a certain degree of phase squeezing but
it doesn’t have to be like that anymore as it has been shown in this report.
It has been shown that there are two ways in which a TM cavity can have
its equations derived. By using the matrix formalism or by re-interpreting the
TM cavities as FP cavities with an e↵ective mirror. This re-interpretation
then gives permission to use the formulas of the FP cavities at the high finesse
approximation and hence derive equation (21) and it is this equations that shows
that TM cavities have the ability to tune their BWs. Ability which then allows
for the control of the phase squeezing process and hence to be able to produce
frequency dependent squeezed light. There are still other challenges ahead like
the required stabilization system that would need to have a precision beyond 1
micron, which would be a whole other project on its own. Nonetheless, to have
the theoretical framework for the TM cavity is to be already one step closer to
its construction and deployment.
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