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Previous studies on the magnetically confined mountains located at the polar caps of accreting
neutron stars in x-ray binary systems have analytically guessed the mass distribution of the accreted
plasma. The research discussed in this paper aims to determine the extent with which the mass-
flux functional form a↵ects the magnetohydrodynamic properties of the star after accretion. The
functional form of the mass-flux was altered systematically three times and the plots of the magnetic
field,  contours, and density were studied relative to previous results in the isothermal atmosphere
limit [1]. Noticeable a↵ects in the form of the final magnetic field and density structure suggests a
dependence on the functional form of dM/d . Additionally, the ellipticity di↵ers significantly for
each altered form, which is important in the context of the detection of gravitational waves from
neutron stars with polar cap mountains. Future work in this research is needed to determine the
source of numerical errors observed and interesting cases including the e↵ects on the magnetic fields
below the Neutron star surface.

I. INTRODUCTION

A potential candidate for continuous gravitational
wave sources and one of the main targets with ground-
based detection sites such as LIGO are neutron stars in
x-ray binaries [2]. An x-ray binary consists of a neutron
star with a companion white-dwarf or super-giant star.
Not only are these stars spinning rapidly with periods in
the millisecond range, but also as time evolves, the neu-
tron star accretes material from its’ companion star via
stellar winds or by disc accretion. The accreted material
from the companion star flows along the magnetic field
lines of the neutron star and accumulates in a column to
form a “mountain” at the polar caps which is predicted
to produce disturbances in space-time if the polar axis is
o↵-axis to the spin axis [1].

Additionally, neutron stars vary in a wide range of
magnetic field strengths: from 107 G up to 1015 G [3].
The observed spin-down rate of the star due to mag-
netic dipole radiation allows the determination of these
external magnetic field values. Previous studies on bi-
nary systems containing a neutron star, show a signifi-
cant decay and evolution in the magnetic fields of these
stellar bodies [4]. A hypothesis to the cause of mag-
netic field evolution on the surface of the neutron stars
in x-ray binaries is magnetic burial. As more and more
accreted plasma increases the size of the polar cap moun-
tain, the mountain eventually buckles due to the pressure
at the base. When Ma ⇡ 10�5M�, the hydrostatic pres-
sure gradient exceeds the magnetic tension, and the base
of the mountain spreads laterally towards the equator,
dragging frozen-in magnetic flux along with it as seen in
Figure 1 [5]. Ultimately, this changes the magnetic field
along the surface of the star and significantly decreases
the magnetic field strength.

The mass-flux of the accreted material is modeled us-
ing the Grad-Shafranov methods. The calculations in
this paper are performed under the assumption of infi-
nite conductivity or no resistivity and hence flux freez-

FIG. 1: Schematic diagram of the magnetic field of a neutron
star (cross section) during polar cap accretion [5].

ing [1]. Previous research has not constrained the mass-
flux distribution relative to the initial state until Payne
& Melatos (2004). They assumed a self-consistent ap-
proach whereby the arbitrary F ( ) function is calculated
explicitly by imposing that the mass-flux distribution of
the final state equals that of the initial state, plus the
accreted material [1]. Additionally, they state, “we have
checked that the solution of the Grad-Shafranov equation
and F ( ) is not sensitive to the exact functional form of
dM/d , the mass-flux.” This statement begs to question,
to what extent do the solutions to the Grad-Shafranov
equation variate with di↵erent mass-flux functions? This
paper seeks to determine alternate self-consistent mass-
flux distributions to model the magnetic burial on neu-
tron stars and to find the extent to which the solutions
rely on the form of dM/d .
Section II defines the Grad-Shafranov derivation and

the methods used by the code to model the mountain
on the neutron star. In section III the reproduction of
results from [1] can be found with explanations to dif-
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ferences in results. Altered mass-flux functions and their
analysis is detailed in sections IV - VI. We then analyze
these results in section VII. Section VIII describes the
ellipticity results and significance to the mass-flux func-
tional form. Finally, in section IX we summarize the re-
sults and provide areas for improvement and future work.

II. THEORY

The only forces acting on the plasma accreted by a
neutron star in an x-ray binary are the Lorentz force
from the magnetic field of the neutron star,

~FB = q(~v ⇥ ~B), (1)

where q is the charge, ~v is the velocity, and ~B is the
magnetic field, the pressure gradient force per volume
rp, and the gravitational force m~g, with mass m and
gravitational field of the neutron star g. Using Newton’s
Second Law,

~F = m~a, (2)

we can write

~F

V
=

q

V
(~v ⇥ ~B)�rp+ ⇢~g = ⇢

d~v

dt
. (3)

Equation 3 can be rewritten with the vector potential
~g = �r�, and the diamagnetic current ~J = �~v and
� = q/V , where � is the volume charge density, and V is
the volume:

⇢~a = ~J ⇥ ~B �rp� ⇢r�. (4)

Using Maxwell’s Equation at the magnetostatic limit

r⇥ ~B = µ0
~J, (5)

we can write in the more conventional notation

⇢
d~v

dt
+ ⇢(~v ·r)~v =

1

µ0
(r⇥ ~B)⇥ ~B �rp� ⇢r�. (6)

In the magnetostatic limit we can rewrite Equation 6
where ~v = 0 and @/@t = 0,

rp+ ⇢r�� 1

µ0
(r⇥ ~B)⇥ ~B = 0. (7)

Next we can use another one of Maxwell’s equations (r ·
~B = 0) to rewrite ~B in terms of a vector potential ~A.

FIG. 2: Neutron star (in yellow) with dipolar magnetic field
lines tangent to constant poloidal flux lines and spherical co-
ordinate system geometry: r, ✓,�.

Considering a spherical geometry as in Figure 2 that
is axisymmetric such that B� = 0, we can derive the

poloidal components of the ~B field.
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Since r and ✓ are independent from one another, the
remaining r̂ and ✓̂ components make up the poloidal field
Bp. We can then create a new term known as the poloidal
flux  = r sin ✓A�. Therefore we can write the poloidal
magnetic field in terms of this poloidal flux,

~Bp =
1

r sin ✓
r ⇥ �̂. (8)

Next, using the remaining Maxwell’s Equation in Equa-
tion 5
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Notice that this is just the toroidal current J�. Finally,
we can work out the final component of Equation 7
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We can then combine all of these results to rewrite Equa-
tion 7

rp+ ⇢r�+
1

µ0r sin ✓

 
r · 1

r sin ✓
r 
!
r = 0

rp+ ⇢r�+ (�2 )r = 0,

(9)

where

�2 =
1

µ0r2 sin
2 ✓

"
@2

@r2
+

sin ✓

r2
@

@✓

 
1

sin ✓

@

@✓

!#
. (10)

Assuming an isothermal atmosphere such that p = c2s⇢,
where cs is the isothermal sound speed. We can then use
the method of characteristics to solve Equation 9. First,
we rewrote Equation 9 in terms of r and ✓ components:

c2s
@⇢

@r
+ ⇢

@�

@r
+ (�2 )

@ 

@r
= 0

⇢r +
�2 

c2s
 r = �⇢�r

c2s
,

(11)

and

c2s
@⇢

@✓
+ ⇢

@�

@✓
+ (�2 )

@ 

@✓
= 0

c2s⇢✓ + (�2 ) ✓ = 0,

(12)

where subscripts imply derivatives. Next we solved for
�2 for each Equation 11 and 12

�2 = �⇢�r � ⇢rc2s
 r

= �⇢✓c
2
s

 ✓

) ⇢r �
 r

 ✓
⇢✓ = �⇢�r

c2s

Given a partial di↵erential equation of the form
a(r, ✓, ⇢)@⇢@r + b(r, ✓, ⇢)@⇢@✓ = c(r, ✓, ⇢) we have a charac-
teristic such that

dr

a(r, ✓, ⇢)
=

d✓

b(r, ✓, ⇢)
=

d⇢

c(r, ✓, ⇢)
(13)

Thus, using the result above we can write

dr

1
= � ✓d✓

 r
= �c2sd⇢

⇢�r
. (14)

This allows us to find two more equations:

 rdr +  ✓d✓ = 0 (15)

and

�rdr = �c2s
1

⇢
d⇢. (16)

Integrating both sides of Equations 15 and 16 yields

 = C1 (17)

and

� = �c2sln(⇢) + C2. (18)
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Choosing a general function f( ) = ln(⇢) +�/c2s we can
solve for pressure as a function of  

⇢ = ef( ) � e��/c2s

= F ( )e�(���0)/c
2
s

) p =
F ( )

c2s
e�(���0)/c

2
s ,

(19)

where �0 = GM⇤/R⇤ is a reference potential and F ( ) =
ef( ) is an arbitrary function. We also know that rF is
parallel to r or rF = F 0( )r . Therefore, Equation
9 can be rewritten

�2 = �F 0( )e�(���0), (20)

to form the second order, nonlinear partial di↵eren-
tial equation. In the past, many guessed the form of
F ( ). Alternatively, Payne and Melatos [1] utilized a
self-consistent approach to derive F ( ) assuming that
the mass-flux of the final state equals that of the ini-
tial state added to the accreted material. The amount of
mass dM confined between the flux surfaces  and  +d 
is

dM

d 
= 2⇡

Z

C
ds⇢[r(s), ✓(s)]r sin ✓|r |�1. (21)

We can then substitute Equation 19 into Equation 21
to obtain a self-consistent expression for the arbitrary
function F ( )

F ( ) =
c2s
2⇡

dM

d 

 Z

C
dsr sin ✓|r |�1e�(���0)/c

2
s

!�1

,

(22)
which can be solved along with Equation 20 to find  (r, ✓)
given a mass-flux ratio.

III. REPRODUCTION OF PREVIOUS RESULTS

Using the isothermal atmosphere limit as explained
above, we reproduce the results of the hydro-magnetic
structure of the ‘mountain’ formed by the accreted ma-
terial at the poles found in [1]. We utilized the 2D Grad-
Shafranov code from [6] in C/C++ with initial condi-
tions: neutron star initial mass M⇤ = 1.4 M�, neutron
star radius R⇤ = 104m, initial magnetic field strength
B⇤ = 108 T, speed of sound in the isothermal crust model
cs = 106 m/s, accreted mass Ma = 10�5 M�,  ⇤/ a fac-
tor b = 3, and Iterations = 200. Using the default and
arbitrarily defined mass function as in [1]

M( ) =
Ma(1� e� / a)

2(1� e� ⇤/ a)
, (23)

where Ma is the accreted mass,  is the poloidal flux con-
tours,  ⇤ is the flux surface at the stellar equator, and
 a is the flux surface at Ra, the radius of the accretion
disk. Notice that although we describe this mass distri-
bution as “arbitrary,” the form of the mass function is
constrained to monotonically increase as well as “pile”
up the material primarily at the poles. Otherwise, the
exact reason for formulation of this Equation 23 is arbi-
trary. A plot of the default mass distribution per contour
can be found in Figure ??. Di↵erentiating Equation 23
with respect to  yields the mass-flux used in [1]

dM

d 
=

Ma

2(1� e� ⇤/ a)

 
1

 a
e� / a

!
, (24)

with normalization variables M0 and  0

dM

d 
=

Ma

2M0(1� e� ⇤/ a)

 
 0

 a
e�  0/ a

!
. (25)

A plot of the mass-flux ratio as a function of  can be
found in Figure 3 which is just the derivative of Equation
23.

FIG. 3: Plot of Eqn. 25 where both axis are scaled to be
unitless.

Below in Figure 4 are (r, ✓) contour plots scaled loga-
rithmically where appropriate to emphasize the bound-
ary layer of compressed magnetic fields. The color scale
ranges from yellow, for maximum values, to purple, for
minimum values of the parameter plotted. These plots
were used to qualitatively check whether our results
aligned with the results in [1] with the same initial condi-
tions as listed above. The appendix contains the original
plots from the Payne & Melatos 2004 publication for
comparison.
The plots in Figure 4 clearly demonstrate the distorted

magnetic field or “equatorial tutu” as predicted by pre-
vious research [5]. The plots of B, ⇢, J , J ⇥ B, and rp
clearly resemble the same forms as in [1] besides some
numerical issues mentioned below.
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FIG. 4: Reproduction of Figure 4 in [1] for Ma = 10�5

M�. Plotted contours for x values: ⌘xmax where ⌘ =
0.8, 0.6, 0.4, 0.2, 0.01, 0.001, 10�4, 10�5, 10�6, 10�12.

The distorted magnetic field lines are seen in Figures
4(a) and the altered magnetic field strength is found in
4(b). The polar mountain density ⇢ is found in Figure
4(c). In Figure 4(d), the toroidal currents are confined
below altitude x0 near the polar cap where the radius of
curvature ofB is smaller than the hydrostatic scale height
x0. The force per unit volume in Figure 4(e) should bal-
ance the pressure gradient in Figure 4(f) which prevents
the accreted material from spreading to the equator.

Some di↵erences to mention between the plots in Fig-
ure 4 and Figure 11 are found after a colatitude of 70�.
The anomalies that form closer to the equator seem to
represent machine precision or rounding errors. Addi-
tionally, plotted in Figure 5, notice that after a scaled
log x value of 1, the current approaches zero. Thus, we
can conclude that any purple contours di↵ering in our
results are equivalent to zero and thereby insignificant.
Also, the pressure gradient contour plot in Figure 4(f)
shows signs of numerical instabilities that have not been
resolved at this point.
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FIG. 5: Plot of current vs. logarithmically scaled height at a
constant colatitude of 30�.

IV. ALTERED MASS-FLUX #1

We can modify Equation 25 to have a modified, but
not drastically di↵erent form as the first altered mass-
flux ratio. In this first case, the only di↵erence between
the original and first altered mass-flux is the squared  
term in the exponential:

dM

d 
=

Ma

2M0(1� e� ⇤/ a)

 
 0

 a
e�(  0/ a)

2

!
, (26)

and notice the e↵ects on Figure 4 as seen below.
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FIG. 6: Contour plots with Equation 24 for Ma = 10�7

M�. Plotted contours for x values: ⌘xmax where ⌘ =
0.8, 0.6, 0.4, 0.2, 0.01, 0.001, 10�4, 10�5, 10�6, 10�12.

Additionally, the accreted mass magnitude for the
three altered mass-flux forms was decreased by a couple
magnitudes (Ma = 10�7) due to the numerical instabili-
ties that form from the initial condition which set in for
Ma > Mc. Currently, we do not know Mc for the altered
dM/d used and thus, this provides slightly weaker ef-
fects but with less numerical error.

V. ALTERED MASS-FLUX #2

The second altered mass-flux ratio was altered with-
out an exponential but with a power to the negative 1/2.
This just signifies an inverse relationship between the  
contour and the amount of mass accreted at that  con-
tour. Therefore, as  increases we get further from the
pole and less mass is accreted at these locations. This
agrees with the theory as the plasma should be a↵ected
more by the strong magnetic field lines closer to the pole
to the form the so called “mountain.” Equation 25 mod-
ified to have this di↵erent form:

dM

d 
=

Ma

2M0

 
( + )

 0

 a

!�1/2

, (27)

where  = 100 is a constant to reduce division by zero
errors and notice the e↵ects on Figure 4.
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FIG. 7: Contour plots with Equation 24 for Ma = 10�7

M�. Plotted contours for x values: ⌘xmax where ⌘ =
0.8, 0.6, 0.4, 0.2, 0.01, 0.001, 10�4, 10�5, 10�6, 10�12.

VI. ALTERED MASS-FLUX #3

The third altered mass-flux ratio was similar to the
second except for a negative 1/2 power we chose a neg-
ative 1 power. This provides the same physical process
as described above but with a mountain that forms more
closely compact to the pole. Equation 25 modified to
resemble this form:

dM

d 
=

Ma

20M0

 0

 a

 
( + )

 0

 a

!�1

. (28)

where  = 100 is a constant to reduce division by zero
errors and notice the e↵ects on Figure 4.
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FIG. 8: Contour plots with Equation 24 for Ma = 10�7

M�. Plotted contours for x values: ⌘xmax where ⌘ =
0.8, 0.6, 0.4, 0.2, 0.01, 0.001, 10�4, 10�5, 10�6, 10�12.

VII. ANALYSIS

A comparison between the original ’default’ mass-flux
ratio used in [1] and the three altered dM/d can be
found in Figure 9. The physical forms of the mass-flux
were not altered significantly such that the mass distri-
bution was monotonically increasing and the mountain
was constrained to build up at the poles as predicted in
theory. Notice, that the altered mass-flux’s #2 and #3
are unbounded at the poles and thus imply infinite mass
at the poles which is mitigated by the added constant .

Notice that the  contours in Figures 6(a), 7(a), and
8(a) are not as deformed as in Figure 4. This could
mainly due to the fact that we decreased the value of
the accreted mass constant by two degrees of magnitude.
The e↵ects of magnetic burial might not be as evident
at this value of accreted material, however, results in the
other contour plots show evidence of changes.

The major di↵erences between the contour plots for
di↵erent mass-flux function forms lie in the plots of B, ⇢,
and rP . For the magnetic field strength plots in Figures
6(b), 7(b), and 8(b), the maximum field strength (yellow
contours) is shifted from a colatitude of approximately
30� to a colatitude of 10�. Additionally, the density plots

in Figures 6(c), 7(c), and 8(c) have mountains forming
at the pole (same location) but with more density closer
to the poles. This seems to imply smaller mountains
or more dense mountains forming. Finally, the pressure
gradient contour plots in Figures 6(f), 7(f), and 8(f) di↵er
significantly from the plot in Figure 4(f) that has drastic
numerical errors. This also might be due to the decreased
Ma value, but also could imply that di↵erent functional
forms of dM/d change the form of rP .

FIG. 9: Comparison of mass-flux ratio forms.

VIII. ELLIPTICITY

As material is accreted on the neutron star’s polar caps
and mountains form, the star becomes more elliptic. The
ellipticity is a value used to describe the degree of devia-
tion from a sphere. In general, the ellipticity of a spinning
neutron star accreting mass can be used for the detection
of gravitational waves. The ellipticity is directly propor-
tional to the amplitude of the gravitational wave and
thus an important parameter to numerically determine
for detection. The ellipticity, ✏ can be calculated with

✏ =
|Izz � Iyy|

I0
, (29)

where I0 = 2/5M⇤R2
⇤ and Ijk is the moment of inertia

tensor such that the z-axis lies along the magnetic axis of
symmetry [6]. We can write using the moment of inertia
tensor definition:

Izz =

Z
(x2 + y2) dM, (30)

and

Iyy =

Z
(x2 + z2) dM. (31)
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Using Equation 29, the Priymak code evaluates the el-
lipticity at each point within the iterative process. In
Figure 10, one can find the ellipticity values for each
mass-flux distribution with varying accreted mass values.
Current work is being done to determine the accuracy of
these predictions for the altered mass-flux distributions,
however these results bring hope to continuous gravita-
tional wave searches. According to the most recent search
for gravitational waves from isolated neutron stars, the
minimum ellipticity of the star must be ✏ = 4 ⇥ 10�7

at a distance of 6 kpc and high frequency spin [7]. Our
results not only align with these results from LIGO as
in most of the ellipticity values lie in the range given,
but also the varying values for ellipticity depending on
the mass-flux functional form suggests that the mass-flux
distribution is critical to understanding the gravitational
waves emitted from neutron stars with magnetically con-
fined mountains.

FIG. 10: Ellipticity ✏ for the di↵erent mass flux distributions
and varying accreted mass values.

IX. CONCLUSIONS

Previous research on the process of magnetic burial
and accreting neutron stars has resorted to analytically
guessing the form of F ( ) and dM/d . This research
provides insight on how sensitive the functional form of
the mass-flux is to alterations. Altering the dM/d three
times and plotting the contour plots of the magnetohhy-
drodynamic properties of the star after accretion, has
shown noticeable di↵erences in results. Thus, implying
that there is some level of dependence on the form of the
mass-flux function.

Nevertheless, the errors found in some of the contour
plots need further analysis to ensure that our results are
accurate. Majority of the di↵erences between the repro-
duction of plots from [1] are due to machine percision
error or rounding errors, so we assume that the lowest
value contours (purple) are consistent with being zero.
However, plots of rP have significant instabilities.
Additionally, to further improve this research the code

can be altered to include analysis beneath the surface of
the star. A three-dimensional model of magnetic burial
for neutron stars in x-ray binary systems could also pro-
vide interesting results to further this field similar to
methods by a recent publication [3]. Also, a more re-
alistic equations of state could provide more interesting
results. An adiabatic atmosphere rather than isothermal
has been altered from previous research in the GS code
and is yet to be utilized with these new results.
Finally, the recent search for continuous gravitational

waves in [7] alongside the research described in this paper
suggests the plausibility of detections in the near future.
Conversely, the non-detection to this point marginally
constrains the physics of magnetically confined moun-
tains which could provide even more insight on the mys-
teries of magnetic fields and their origins.

Acknowledgments

This research would not have been possible without
the guidance of Melatos and Brunet I would like to thank
my mentor Melatos for all his guidance on this project,
as well as his PhD student Brunet, who met with me ev-
ery week, provided me with resources, and answered all
my questions throughout this research. Thank you to Dr.
Jonathan Zrake for his feedback and expertise in this area
after proof reading this paper. Additionally, thank you
to Peter Fulda, Paul Wass, and everyone from University
of Florida who made this IREU possible during these
uncertain times. Finally, I would like to thank the Na-
tional Science Foundation for funding this research. NSF
Funding: NSF PHY-1950830 and NSF PHY-1460803.



11

Appendix

FIG. 11: Contour plots for the properties found in [1]. Ma =
10�5 M�.
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