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Abstract

We present a model of the phase camera sensors in use at the Advanced Virgo gravitational wave
observatory, based in the simulation program Finesse 3. As a proof of concept, we deliver a set of
phase camera signals generated by this model for the Advanced Virgo dual-recycled interferometer with
thermal distortions at the intermediate test masses. Through comparisons of real phase camera signals to
similarly generated signals, defects within Advanced Virgo can be more easily diagnosed and ameliorated,
allowing the detector to attain greater sensitivity to gravitational wave sources. While constructing this
model, we have also developed new tools within Finesse 3 that allow for robust simulation of the control
of complicated optical systems like the dual-recycled Advanced Virgo interferometer. With these tools,
future users of Finesse 3 can ensure that their simulated optical systems reach their desired operating
points.

1 Introduction

Since their first joint detection of a binary black hole merger in August of 2017 [1], the Advanced Virgo (AdV)
and Advanced LIGO gravitational wave interferometers have together observed many gravitational wave
sources—all from mergers of compact binaries. If we hope to observe more exotic gravitational wave sources
or to sample a large enough population of binary mergers to deliver convincing astrophysical conclusions,
we must continue to improve the sensitivities of these interferometers. Here, we approach this challenge
by seeking to improve the control systems of AdV. The control loops of AdV keep the interferometer at
its specified operating point, e.g. ensuring that the carrier laser is resonant in arm and recycling cavities
and that the desired amount of light leaks into the dark port. However, defects in the optics of AdV
(misalignments, tilts, point absorbers on test masses, etc.) can degrade the interferometer’s sensitivity, even
if the operating point is controlled. To assist in the diagnosis of these defects, optical phase cameras (PCs)
have been installed near the bright port and dark port of AdV. These PCs provide images of the powers
and phases of the carrier beam and all control sidebands within the interferometer. By understanding how
various defects may a↵ect these power and phase images, one might use the PC signals to diagnose and
mitigate defects present in AdV.

To facilitate such an understanding of these signals, we have developed a model of the AdV PCs using the
in-development software package Finesse 3. Along the way, we developed new analysis tools for Finesse 3.
In particular, we created new tools that facilitate the control of a simulated interferometer to an operating
point. We begin this report by describing the characteristics of the AdV PCs and introducing the theory
underpinning their operation. We will then describe basic theory of control of the real AdV interferometer
and discuss how we applied this theory to create new tools for simulating interferometer control in Finesse
3. Next, we apply Finesse 3—using these new tools—to create a model for the AdV PCs. We show that
this model behaves as expected for real PCs, then apply the model to a robust simulation of the entire
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AdV interferometer. Finally, we introduce various defects into this simulation and observe the resultant PC
signals.

2 Background

2.1 Phase Camera Operating Principles

This discussion comes predominately from [2]. At present, there are two phase cameras installed in AdV,
identical in design. These cameras image the inteferometer beam via pick o↵ plates. One such pick o↵ plate
is placed between the power recycling mirror and the primary beamsplitter; the other is placed between the
beamsplitter dark port and the output mode cleaner. The phase cameras measure profiles of the intensity
and phase for the carrier beam and for all control sidebands.

The phase cameras measure these profiles using a scanning mirror, which scans over the interferometer
beam and focuses the beam from a particular small spatial region onto a photodiode. But before entering
the photodiode, the interferometer beam is combined with a reference laser beam, which is frequency shifted
by 80MHz with respect to the main laser beam. Without such a frequency shifted reference beam, it
would be impossible to use demodulation to distinguish between upper and lower sidebands, as they would
be demodulated at the same frequency. The radio frequency (RF) component of the photodiode signal is
digitally demodulated to find the intensity and phase of all frequency components of interest (see Section
2.2 for technical detail). By performing this demodulation for all positions scanned over, the cameras
obtain images of the intensity and phase images for each frequency component. Note, however, that due to
curvature introduced by the scanner, the absolute phase images acquired are typically not useful. Rather,
the di↵erences between the phase images between two frequency components, e.g. between the carrier and
a lower sideband, are used.

2.2 Theory of Modulation and Demodulation

The control of interferometers like Advanced Virgo (AdV) relies heavily on modulation of the main input
laser to create control sidebands and demodulation of these control sidebands at various detectors along
the interferometer. Here we describe the theory behind modulation and demodulation, with a particular
emphasis on how the phase cameras of AdV apply demodulation to attain images of sideband power and
phase. This discussion comes from [3] and [2].

At each point perpendicular to the direction of propagation, the laser light field that enters AdV can
be represented as Ein = E0 exp (i!0t). This laser passes through electro-optic modulators (EOMs), which
modulate the phase of the light field, much like wiggling the position of the laser source back and forth. If
Ein enters an EOM that modulates the phase at frequency ⌦ and with amplitude (called modulation depth)
m, the resulting field is

Eout = E0 exp (i(!0t+m cos⌦t)). (1)

This field can be rewritten as an expansion in Bessel functions Ji(x), which can be further simplified if
m << 1:

Eout = E0 exp (i!0t)
1X

k=�1
i
k
Jk(m) exp (ik⌦t)

⇡ E0 exp (i!0t)(1 +
im

2
(exp (�i⌦t) + exp (i⌦t))).

(2)

Written in this form, we can see that the field exiting the EOM is, to first order, a superposition of three
fields: one at the original carrier frequency !0, a lower sideband at frequency !0 �⌦, and a upper sideband
at frequency !0 +⌦. These fields have slightly di↵erent resonance conditions. Therefore, if one can measure
the field of one of the sidebands independently, they can use the sidebands to construct error signals to
accurately control path lengths in an interferometer. This method of control is called Pound-Drever-Hall
locking [4], and similar methods are used extensively in AdV.
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To make such independent measurements of a certain frequency component requires the technique of
demodulation. Here we discuss the theory of demodulation as it is applied at the phase cameras at AdV.
Consider the light field that strikes the photodiode of the phase cameras. Accounting for all frequency
components in the beam, we can write the light field comprising this beam as

E =
NX

i=0

aie
i!it, (3)

yielding an intensity

S0 = E · E⇤ =
NX

i=0

NX

j=0

aia
⇤
je

i(!i�!j)t (4)

where !i are the frequency components in the beam and ai are the complex amplitudes of these components.
Suppose we seek to demodulate one sideband with frequency !sb. To do so, we mix this intensity signal with
a signal cos!dt+ �d, with !d = !ref � !sb. Here, !ref is the frequency of the reference laser. The resulting
signal is

S1 = S0 cos (!dt+ �d) =
1

2

NX

i=0

NX

j=0

aia
⇤
je

i(!i�!j)t
⇣
e
i(!dt+�d) + e

�i(!dt+�d)
⌘
. (5)

We then low-pass filter this signal to take only the DC component. The DC component comprises those
terms for which (!i � !j) equals !d or �!d:

S1,DC =
1

2

NX

i=0

NX

j=0

�
aia

⇤
je

�i�d + aja
⇤
i e

i�d
�
for i, j s.t. !i � !j = !d. (6)

This can be rewritten

S1,DC = Re

0

@
NX

i=0

NX

j=0

aia
⇤
je

�i�d

1

A for i, j s.t. !i � !j = !d. (7)

Recall we have chosen !d = !ref � !sb for this particular demodulation. Typically, if the reference laser
and modulation frequencies are chosen judiciously, there will be no other frequency component pairs with
di↵erence in frequency equal to !d—and if there are, the amplitude of at least one of those components is
small. If this condition holds, Eq. 7 reduces to

S1,DC = Re(arefa
⇤
sbe

�i�d) = |aref ||asb| Re(ei(�ref��sb)e
�i�d). (8)

In the demodulation process, the phase cameras actually apply two demodulations sequentially. We first
demodulate with �d = 0 to acquire the in phase signal

I = |aref ||asb| Re(ei(�ref��sb)) = |aref ||asb| cos (�ref � �sb) (9)

and then with �d = ⇡/2 to acquire the in quadrature signal

Q = |aref ||asb| Re(�ie
i(�ref��sb)) = |aref ||asb| sin (�ref � �sb). (10)

With these two signals, we can calculate

|aref ||asb| = (Q2 + I
2)1/2 (11)

and
�ref � �sb = arctan (Q/I) (12)

Assuming |aref | and �ref are constant across the beam, an image of |aref ||asb| provides an image of the
intensity of the sideband (technically, of its square root), scaled by the reference beam. Similarly, an image
of �ref � �sb is an image of the sideband phase, o↵set by the reference phase.
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3 Developing Tools for Simulating Interferometer Control

In order to accurately predict the signals of the AdV phase cameras, we must first reliably simulate the light
fields everywhere within the dual-recycled interferometer geometry of AdV. We perform this simulation with
the program Finesse 3, the in-development third version of the widely used interferometer simulation toolkit
Finesse [5]. As a part of this project, we developed, tested, and documentated new code for Finesse 3. We
in particular developed analysis tools called Actions within Finesse 3, which allow users to easily perform
previously complex actions like minimizing particular signals as a function of some degree of freedom or
moving the entire interferometer to a controlled operating point.

The optical components of AdV must be carefully controlled in order to satisfy certain resonance condi-
tions in the interferometer. The optimal configuration in which all of these conditions are satisfied is called
the operating point. Finesse 3 has a few Actions that facilitate the setting of the positions of optical compo-
nents in order to reach this operating point. Here, we describe the basics of control of the real interferometer,
the original implementation of this control with Actions, and our improvements to these Actions.

3.1 Basics of Interferometer Locking at AdV

In AdV, five degrees of freedom (DOFs) can be adjusted to reach this operating point. These DOFs respond
to five error signals. Reaching the operating point of this multiple input, multiple output (MIMO) system
amounts to finding the values of the DOFs at which all of the error signals are minimized. The five DOFs
that are adjusted to control the interferometer are listed below, with lengths defined in Fig. 1.

Di↵erential Arm Length: DARM =
LN � LW

2
(13)

Common Arm Length: CARM =
LN + LW

2
(14)

Michelson O↵set: MICH = lN � lW (15)

Power Recycling Cavity Length: PRCL = lP +
lN + lW

2
(16)

Signal Recycling Cavity Length: SRCL = lS +
lN + lW

2
(17)

In traditional control of the AdV interferometer, each DOF is paired with and responds to one error
signal. That is, for each error signal Ei, it is assumed that changes in only one DOF Fi yield a change in
Ei. While this assumption is not accurate, its application allows for e↵ective control of the interferometer.
The error signals used for control of AdV are, as mentioned in Section 2.2, demodulated measurements of
the control sidebands at certain points of the interferometer. Three modulation frequencies are applied in
AdV to create these control sidebands. These frequencies are all chosen such that the primary mode of each
sideband is anti-resonant in the interferometer arms. The first modulation frequency, at f1 ⇡ 6.27MHz,
is resonant in the power recycling cavity. The second, at f2 = 9f1 ⇡ 56.44MHz, is resonant in both
the power recycling cavity and the signal recycling cavity. The third, at f3 = 4/3f1 ⇡ 8.36MHz, is not
resonant in either recycling cavity [6]. The error signals derived from these sidebands are listed below, in the
following form: detector location, frequency of demodulation, phase of demodulation, corresponding DOF.
The detectors where these measurements are taken are pictured in Fig. 2. Where the demodulation phase
is I (i.e., in-phase), the demodulation phase is chosen such that the error signal is maximized relative to the
DOF.

• B2 f3 I: PRCL

• B2 f2 Q: MICH

• B2 f1 I: CARM

• B1p f2 I: DARM

• B2 f2 I: SRCL
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Figure 1: Lengths in AdV used in DOF definitions.

Figure 2: Detectors of AdV at which error signals are measured.
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Much e↵ort is required to “pre-tune” the interferometer, placing it in a configuration that is near enough
to the operating point that the relationships between every Fi and Ei are either linear or very near zero.
Once this pre-tuning is achieved, we then assume that

@Ei

@ ~F

=
@Ei

@Fi
= Gi

where Gi is the gain of Ei with respect to Fi [6]. From this, we see that if an error signals has some value
Ei, a DOF Fi should be changed by an amount �Ei/Gi in order to move the error signal to zero.

3.2 Original Interferometer Locking

Initially, the Action used to lock a simulated interferometer, called RunLocks, applied the same algorithm
described above. Assuming the interferometer was in a pre-tuned state near the operating point, the Run-

Locks calculated the values of the error signals, Ei,0 at the DOF values Fi,0. It then iteratively updated
the DOF values according to

Fi,j+1 = Fi,j �
Ei,j

Gi
(18)

until each error signal is held below a predefined accuracy value.

3.3 Improved Interferometer Locking

However, this algorithm su↵ers in performance from the assumption that each error signal is a function of
just one DOF. That is, without accounting for the relationships between all DOFs and all error signals, each
iteration frequently overshoots the error signal minimum. As a result, especially when higher order modes
are considered, the algorithm is often either slow to converge or does not converge at all.

The simulated control procedure can be improved by using the entire sensing matrix, which gives the gains
relating all of the DOFs and all of the error signals. Note that we still assume that all of the relationships
between DOFs and error signals are linear. Such a sensing matrix has the form of the matrix below:

2

664

�E1

�E2

...

�En

3

775 =

2

664

G11 G12 ... G1n

G21 G22 ... G2n

... ... ... ...

Gn1 Gn2 ... Gnn

3

775

2

664

�F1

�F2

...

�Fn

3

775 . (19)

More compactly, ~E = G~F . The traditional approach of relating each DOF to a single error signal amounts
to using only the diagonal of this matrix. But by observing a real sensing matrix like the one below, which
was calculated from our simulation of AdV, we can observe that some o↵-diagonal components are greater
than the diagonal component in a given row.

PRCL MICH CARM DARM SRCL
B2 f3 I 1.583e-02 3.699e-05 -4.512e+00 1.615e-02 7.467e-06
B2 f2 Q 1.514e-03 -3.208e-04 -4.382e-01 1.568e-03 9.216e-13
B2 f1 I -3.017e-03 -5.362e-06 6.255e+00 -2.238e-02 -6.141e-06
B1p f2 I -1.962e-03 3.423e-01 2.373e+00 9.749e+01 -2.132e-04
B2 f2 I -2.066e-03 4.439e-06 3.202e+00 -1.146e-02 1.623e-04

Table 1: A sensing matrix calculated from our AdV simulation.

To minimize the error signal using the entire sensing matrix, we can treat the sensing matrix as a constant
Jacobian matrix (since we have assumed we are in the linear regime) and apply the multidimensional Newton’s
method [7]. That is, we iteratively update the DOFs as follows:

~Fi+1 = ~Fi �G
�1 ~Ei. (20)
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Figure 3: Iterations required for locking of example interferometer following kick of CARM and DARM
DOFs. White pixels indicate failed locking.

The new action RunLocksAdvanced allows the user to choose between the original “paired” control
method and the improved Newton’s method. Theoretically, Newton’s method should achieve lock for much
faster and for a wider range of initial conditions than the paired method. The Finesse 3 documentation
[8] provides a detailed example proving the advantages of Newton’s method. This example defines a dual-
recycled interferometer, similar to AdV, initially in a locked state. The DOFs CARM and DARM are then
kicked away from the operating point, and both the paired and Newton’s methods are used to try to bring
the system back to lock. Fig. 3 shows the number of iterations required to reach lock for the two methods.
We observe that Newton’s method converges for a much larger fraction of the parameter space than the
paired method. Moreover, for pixels in which the paired method converges, Newton’s method requires far
fewer iterations.

3.3.1 Checking Assumption of Linearity

It is often useful to check the assumption that the interferometer has been appropriately pre-tuned (i.e. that
all DOFs and error signals are related linearly). We created the action CheckLinearity for this purpose.
This action displays a grid of the error signals as a function of each DOF independently, as shown in Fig. 4.
This figure depicts the output of CheckLinearity for the same example used in the generation of Fig. 3,
with the system locked except for a deviation of 0.01� in DARM. Nearly all of the plots in Fig. 4 are linear,
except for three non-diagonal plots in the top row. However, one can observe that the x axes in these three
plots are orders of magnitude larger than the first plot in the top row (which corresponds to a diagonal
element in the sensing matrix). Thus, these three nonlinear plots correspond to three DOF-error signal
relationships that have negligible gain and can therefore be assumed to not a↵ect the control. To understand
more rigorously why non-diagonal DOF-error signal pairs with such negligible gain will not a↵ect control,
consider a sensing matrix that is diagonal except for one very small o↵-diagonal element. The inverse of this
matrix, which is used to adjust DOFs via Eq. 20, can be calculated via Gauss-Jordan elimination as follows:

2

6664

A ✏ 0 0 1 0 0 0
0 B 0 0 0 1 0 0

0 0
. . . 0 0 0

. . . 0
0 0 0 N 0 0 0 1

3

7775
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Figure 4: Output of CheckLinearity for a dual-recycled interferometer model. All signal-DOF pairs are
either in the linear regime or are negligibly dependent on one another, so this state is suitable for our locking
algorithms.

=)

2

6664

1 ✏/A 0 0 1/A 0 0 0
0 1 0 0 0 1/B 0 0

0 0
. . . 0 0 0

. . . 0
0 0 0 1 0 0 0 1/N

3

7775

=)

2

6664

1 0 0 0 1/A �✏/AB 0 0
0 1 0 0 0 1/B 0 0

0 0
. . . 0 0 0

. . . 0
0 0 0 1 0 0 0 1/N

3

7775
.

Thus, the small nonzero o↵-diagonal element of the sensing matrix is further suppressed in the inverse matrix,
meaning that it will yield a negligible e↵ect on the corresponding DOF.

3.3.2 Dragging Locks to States with Large Defects

However, it is often desirable to find the operating point for an interferometer that possesses a substantial
defect (e.g. misalignment of mirrors or mismatched radii of curvature), for which pre-tuning to the linear
regime is especially challenging. A solution is to find the operating point of the interferometer without the
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Figure 5: Repetition of the example leading to Fig. 3, but scaling all DOF changes by 0.5.

defect, then to gradually increase the magnitude of the defect, finding the operating point at each step of
the way. For this purpose, we created an Action called DragLocks. This Action attempts to move to the
final operating point of the interferometer over ten steps, at each step linearly adjusting parameters defining
the defect and reaching lock. If the locking fails at any step, that step is broken down into ten additional
steps; such decreasing of step size may continue until a maximum number of recursions is reached.

3.3.3 Scaling DOF Adjustments

If locking is attempted when outside the linear regime, Eq. 20 will not work as well (or will not work at
all). In this case, Eq. 20 is in particular prone to overshooting the operating point at each iteration. When
this overshooting becomes too large, the iterations diverge and locking fails. To account for this problem,
an option has been added to RunLocksAdvanced for the user to specify a factor that scales the change
of each DOF. This method also applies for the paired method. Using a scale factor of 0.5, we repeated the
tests used for comparing the paired and Newton’s methods that led to Fig. 3. This scale factor resulted
in Fig. 5, which shows that this scale factor allows for an improved domain over which locking succeeds.
However, when the system is already close to lock, using a scale factor less than unity increases the number
of iterations required for locking.

4 Modeling Phase Cameras with Finesse 3

Having thus improved the control of intereferometers in Finesse 3, we sought to create a model the PCs of
AdV.

4.1 Implementation in Finesse 3

In order for our model to be a useful representation of the phase cameras, it should generate, for an arbi-
trary beam, demodulated intensity and phase images for the carrier and all sidebands. Our model does not,
however, account for the curvature introduced by the scanner, so the absolute phase images from our model
are free from such e↵ects. For comparison with real phase camera signals, one may still subtract the phase
images of any two frequency components. We developed and tested this model using a basic Michelson in-
teferometer geometry. Initially, the primary laser was phase modulated just once, at frequency 6.27077MHz
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and with modulation depth of 0.1. The output of the Michelson dark port was sent to a secondary beam-
splitter, where it combined with a reference laser beam. The reference laser had an 80MHz frequency o↵set
from the primary laser. Initially, both the primary and reference lasers were in purely Gaussian modes.

There are many detector elements in Finesse 3 that allow one to extract information about a laser
beam’s frequency components. If the beam is one-dimensional, the amplitude detector or ad element returns
the intensity and phase of any frequency component without any demodulation—of course, such omniscience
is as of yet impossible for a real detector. More realistically, the power detector and demodulator or pd1
element demodulates a one-dimensional beam at a user-defined frequency. In analogy to ad but for a three-
dimensional beam, the field camera or fcam detector gives images of the intensity and phase of the beam at
a specified frequency. However, as of this writing, there is no element serving as a three-dimensional analogy
to pd1. Such an element would be ideal for modeling the phase cameras.

Nonetheless, by using fcam detectors to reconstruct the frequency components of the beam and manually
applying demodulation, we can model the phase cameras. In our model, we first determine all frequency
components in the optical system, then place an fcam for each such frequency. Each fcam has 100 ⇥ 100
pixels and a width of three times the beam waist at the measurement point. After running the model, we
therefore know the complex amplitude of every frequency component at every pixel.

With this knowledge, we can demodulate the signal at each pixel and at all desired demodulation fre-
quencies. We find the demodulated signal for a sideband of interest with frequency !sb (and thus with
demodulation frequency !d = !ref � !sb) by first calculating

NX

i=0

NX

j=0

aia
⇤
j for i, j s.t. |(!i � !j)� !d| < ✏ (21)

where ✏ is a small value (chosen to be 100Hz) to account for any floating point error. Note the relationship
between Eq. 21 and Eq. 7. If we find the magnitude and phase of the complex result of Eq. 21, we find the
values |aref ||asb| and �ref � �sb, respectively. For generality, Eq. 21 uses the full sum rather than taking
only aia

⇤
j = arefa

⇤
sb as in Eq. 8.

Our model applies this procedure to find |aref ||asb| and �ref � �sb for all pixels from the fcams. It then
repeats for all demodulation frequencies of interest. In the next section, we demonstrate the intensity and
phase images produced by this model.

4.2 Evaluating the Model

We tested the model with the optical setup described above, with only one modulation frequency and with the
primary and reference lasers in purely Gaussian modes. We observe the images of the intensities and phases
of the carrier, upper sideband (USB), and lower sideband (LSB). We did this with the simple Michelson
interferometer tuned to the dark fringe (Fig. 6) and then slightly detuned from the dark fringe (Fig. 7). As
expected at the dark fringe, the intensity of the carrier field is zero to within floating point precision, while
the intensities of the sidebands are nonzero. Meanwhile, when the interferometer is slightly detuned, the
intensities of the sidebands are an order of magnitude smaller than that of the carrier, in agreement with
the modulation depth of 0.1. For both cases, the shape of the intensity and phase maps are Gaussian and
spherical, respectively, as expected.

We next test the model with the primary laser in a more complex higher order mode, namely the LG33

mode. Again, we show the intensity and phase images when the interferometer is tuned to the dark port
(Fig. 8) and then slightly detuned from the dark fringe (Fig. 9). Again, the intensity values and shapes of
these images match our expectation for the LG33 mode.

5 Observing Phase Camera Signals in AdV Model

Having thus confirmed the reliability of the Finesse 3 phase camera model, we implemented the model into
a pre-existing Finesse 3 notebook (courtesy of Andreas Freise) that models all optical components of AdV
and locks the positions of these optical components to stable operating conditions. In particular, we added
such phase cameras in the B4 port and the B1p port of AdV. The B4 port corresponds to light deflected
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Figure 6: Phase camera image for a purely Gaussian beam and with interferometer tuned to the dark fringe.

Figure 7: Phase camera image for a purely Gaussian beam and with interferometer slightly detuned (by
0.02�) from the dark fringe.
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Figure 8: Phase camera image for a beam in the LG33 mode and with interferometer tuned to the dark
fringe.

Figure 9: Phase camera image for a beam in the LG33 mode and with interferometer slightly detuned (by
0.02�) from the dark fringe.
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Figure 10: Simulated phase camera images for well-matched AdV interferometer.

from the power recycling cavity with a pick-o↵ plate. That is, the pick-o↵ plate is placed just down-beam of
the power recycling mirror. The B1p port corresponds to light exiting the signal recycling cavity, just before
the output mode cleaners. Using our phase camera model at these two ports, We generated images of the
phases and powers of the carrier and the three control sidebands currently in use.

5.1 Well-Matched Base Case

We first set all of the optical parameters in this AdV model to their values specified in the AdV technical
design report [9]. These values yielded a well-matched interferometer, which serves as a base case against
which to compare scenarios for which defects have been added into the interferometer. We used the Run-
LocksAdvanced action to ensure that this simulated, well-matched AdV model was locked at the desired
operating point. We then observed the images generated by our phase camera model. These images are
shown in Fig. 10. We observe in these images that the intensity and phase images are again Gaussian and
spherical, respectively, as expected. However, we can see a slight astigmatism in some of the phase images.
Another feature of interest is the inversion between the image of the carrier phase and the images of all of
the sideband phases at the B1p port. However, recalling that these images are actually of �ref � �sb, we
can conclude that this di↵erence is likely not too concerning–it simply means that the radius of curvature
for the carrier was smaller than that of the reference laser, while the radius of curvature for the sidebands
were larger than that of the reference laser. Recall that, for comparison with real phase camera images, we
would subtract between these phase images, eliminating this dependence on the phase of the reference laser.
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Figure 11: Simulated phase camera images when common lensing is introduced in the AdV interferometer.

5.2 Common Lensing

We next introduced optical defects in the simulated AdV interferometer and observed the resultant phase
camera signals. We in particular studied the e↵ects of thermal distortions on the intermediate test masses
(ITMs). Such thermal distortions, arising from heating of the ITMs by the circulating beam, can be modeled
as lenses just past the ITMs. We therefore introduced two such lenses into our simulated interferometer (one
at each ITM), both of focal length 1e5m. Because both focal lengths have the same sign, this is referred to as
common lensing. When introducing this defect, we used DragLocks to keep the interferometer at its locked
operating point. We then observed the images produced by our phase camera model, shown in Fig. 11. The
intensity images are all still Gaussian, but we can now observe more interesting, radially symmetric features
in the phase images.

5.3 Di↵erential Lensing

Finally, we introduced di↵erential lensing at the ITMs. That is, we changed the focal lengths of the lenses
introduced at the ITMs to have opposite signs. We set one of the focal lengths to be -1e7m and the other
to be 1e7m. We again used DragLocks to achieve lock in this configuration. The resultant phase camera
images are shown in Fig. 12. We again see features of higher-order modes arise in the phase images. From
this brief test, we observed that di↵erential lensing causes a much larger e↵ect on interferometer performance
than common lensing. That is, even lenses with such wide focal lengths as ±1e7m had a large e↵ect on the
phase images. Further, even using DragLocks, we were unable to reach lock for di↵erential lensing with focal
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Figure 12: Simulated phase camera images when di↵erential lensing is introduced in the AdV interferometer.

lengths of ±1e6m.
Despite the interesting features arising in our images when modeling thermal lensing, we do not expect to

see the same features in the real AdV phase cameras. This is because our simulations—both of AdV and the
phase cameras themselves—leave out a fair amount of complexity. For example, mirror maps, which allow
you to precisely define the surfaces of optics and any possible inhomogeneities, were not yet implemented in
Finesse 3. Further, we do not model the electronics and particular scanning pattern of the phase cameras.
Nonetheless, our phase camera model lays the computational foundation for future researchers to create
more realistic images to compare with real images.

6 Conclusion

The phase cameras of Advanced Virgo are valuable for identifying and responding to interferometer noise
that may otherwise go unnoticed, such as thermal distortions. As such, their use may improve the sensitivity
of Advanced Virgo, and if adopted elsewhere, other gravitational wave observatories. We have developed
a model of these phase cameras using the simulation program Finesse 3. Having applied this model to
a simulation of the complete Advanced Virgo interferometer, we have generated phase camera signals for
both the optimally designed inteferometer configuration and for configurations in which thermal distortions
are present. We have also constructed new tools within Finesse 3 that allow for reliable simulation of
steady-state interferometer control.
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