
Reproducing the lpf full dynamics
calibration via the irls method

College of Engineering

Brad Nicholas Ratto
RattoB@my.erau.edu

Faculty Sponsor

Dr. Daniele Vetrugno
daniele.vetrugno@unitn.it

Project Period
Summer 2021

University of Florida
Gainesville, Flordia



;A<

Acknowledgments

I would like to thank the University of Florida Gainesville for hosting the Inter-
national Research Experiences for Undergraduates (IREU), along with the IREU’s
coordinators Dr. Paul Fulda and Dr. Peter Wass. A special thanks to research
mentor Dr. Daniele Vetrugno for guiding me and providing with the resources nec-
essary. I would like to thank graduate students Nathaniel Strauss, Jonathon Baird
and Quang Nam.

I would like to thank the National Science Foundation (NSF) for funding programs
such as the IREU at University of Florida, NSF grant numbers include NSF PHY-
1950830 and NSF PHY-1460803

i rattob@my.erau.edu



CONTENTS CONTENTS

;A<

Contents

1 Introduction 1

2 Project Background 4

2.1 LISA Pathfinder Dynamics . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Project Approach 8

3.1 Iterative Reweighed Least Squares . . . . . . . . . . . . . . . . . . . . 9

4 Conclusion 11

ii rattob@my.erau.edu



1 INTRODUCTION

;A<

1 Introduction

The detection of Gravitational Waves (GWs) has revealed yet another method in
which information is transmitted across the cosmos, bringing with it further insight
into the inner workings of our universe. In order to detect such phenomena, laser
interferometers are used to measure microscopic deformations in space-time caused
by transient GWs; ultimately granting us the ability to traverse ever further into the
new frontier of gravitational wave based astronomy. Although serving as a valuable
apparatus for making detections, it is important to realize that these ground-based
laser interferometers are a↵ected by seismic noise and shifts in the local gravity
gradient which limits the ability to detect events in the mHz range. As eluded to,
the development of space-based laser interferometers opens the possibility to detect
events which produce GW emissions in the mHz regime, such events include the
formation and coalescence of super-massive black holes.

One such example of a future space-based interferometer is the Laser Interferom-
eter Space Antenna (LISA) project, consisting of a constellation of three separate
spacecraft trailing Earth’s orbit, LISA aims to obtain both information regarding
the polarization of emitted GWs while simultaneously measuring source parameters
of astrophysical significance. As a result, the LISA Pathfinder (LPF) mission was
launched as a method to validate performance requirements and prove the e�cacy
of the technology to be later used in the LISA mission. The technology package on
board the LPF satellite was comprised of two main components, the Gravitational
Reference Sensor (GRS), which consist of two free falling masses contained within
an electrode housing maintained under vacuum, and the Optical Metrology System
(OMS), which is comprised of a set of heterodyne laser interferometers.

A schematic of the LPF satellite is shown in Figure 1 and will be used to sum-
marize the objectives and highlight key principles of the mission. As such, the main
objective for the LPF mission was to measure the relative displacement, �x(t), of
the two test masses, TM1 and TM2, in order to quantify the rate of fluctuation of the
di↵erential stray force per unit mass �g(t), or as commonly refer to as the di↵erential
acceleration noise. Requirements for the fluctuations in the acceleration noise where
not to exceed a level of 30 fm s�2/

p
Hz; not only was the requirement satisfied but

it was shown that the acceleration noise reached levels as low as S1/2
�g

⇠= 1.74± 0.05

fm s�2/
p
Hz above 2 mHz and S1/2

�g
⇠= (6± 1)⇥ 10 fm s�2/

p
Hz at 20 µHz.
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Figure 1: A schematic of the LPF satellite and the scientific payload is shown above
[1]. The scientific payload is comprised of two test-masses within their vacuum
enclosures and surrounded by force sensing actuators or commonly known as the
Gravitational Reference Sensor (GRS). An optical table with a set of heterodyne
laser interferometers form the Optical Metrology System (OMS), it’s purpose is two-
fold. The first of which is to measure the di↵erential position along the x-axis of the
two test masses along with their di↵erential angular positions with respect to each
other. The second is to measure the position and angular orientation of TM1 with
respect to the spacecraft body frame. These interferometric measurements are used
as inputs to the Drag-Free and Suspension control loops; the former of which is used
to keep the spacecraft’s position fixed with TM1 via the use of the µN thrusters and
the latter control loop keeps the position of TM2 fixed to TM1 via the force sensing
capacitors of the GRS.

By the very nature of the experiment, the LPF satellite, along with it’s scientific
payload, behaves as a three-body system; in order to ensure the stability of this sys-
tem, the LPF satellite was equipped with force sensing actuators and µN thrusters
controlled via Suspension and Drag-Free control loops. The purpose of these mecha-
nisms are to keep both the spacecraft body and TM2 locked in position with respect
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to TM1. As previously mentioned, the OMS is comprised of two heterodyne laser
interferometers; this optical configuration serves two purposes. The first was to sense
the di↵erential length, along the x-axis, and di↵erential angles of TM1 and TM2 with
respect to each other, see Figure 2 for the axes convention used. The second purpose
was to measure the position and angle of TM1 with respect to the spacecraft body
frame. These interferometric measurements are used as inputs to control loops to
keep the spacecraft body and TM2 locked to TM1.

Figure 2: The axis used for both best masses and the spacecraft follows the right
hand rule, the x-axis is defined as the long sensitive axis and is set to be orthogonal
to both TM1 and TM2 and passes through the OMS [4]. As such, the di↵erential dis-
placement between the two masses is defined as d ⌘ �x(t) = x2(t)� x1(t). The dif-
ferential angles between the two test masses are then defined as �⌘(t) = ⌘2(t)� ⌘1(t)
and ��(t) = �2(t)� �1(t). The final measurement is with respect to TM1 and the
spacecraft frame, or simply defined as the position, x1, of TM1 and the corresponding
angular position, ⌘1 and �1.
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2 Project Background

The project had two objectives, the first (1) was to understand and recreate the
Iterative Reweighted Least Squares (IRLS) technique developed by the LISA collab-
oration to identify the parameters as specified by the LPF dynamics model, this is
later used to assess the fidelity and accuracy of the model. The second objective (2)
is a case study to investigate the impact of modifying the set of parameters specified
to be solved for by the IRLS algorithm; the results of which could be used to better
understand and account for cross-talk. It is for these reasons that an understanding
of the dynamics of LPF is necessary.

2.1 LISA Pathfinder Dynamics

As previously mentioned, the nature of the LPF satellite, along with its scientific
payload, form a three-body system, this includes the spacecraft body, TM1, and
TM2, whose dynamics can be described by the following equation of motion (EOM):

�gx(t) = �ẍ(t)� gc(t) + !2
2�x(t) +�!2

12x1(t) (1)

The EOM in equation 1 has four main components, the �gx(t) term which is
the sought after di↵erential acceleration noise prior to correcting for inertial forces,
�ẍ(t) and �x(t) which is the measured di↵erential acceleration and di↵erential po-
sition between the two test-masses respectively, the gc(t) term which represents the
command forces induced onto the test masses and finally the !2

2 and �!2
12 terms are

used to couple the relative motion of the test masses and spacecraft. The command
force �gc(t) is defined as follows:

gc(t) = �2
Fx2

mTM2

(t� ⌧2)� �1
Fx1

mTM1

(t� ⌧1) = �2fx2(t� ⌧2)� �1fx1(t� ⌧1) (2)

Where fx1 and fx2 are the applied forces on each test mass, with masses mTM1 and
mTM2 , while Fx1 and Fx2 are the same applied forces per unit mass. The time
delay coe�cients ⌧1 and ⌧2 are used to account for the delay between the OMS and

4 rattob@my.erau.edu



2.1 LISA Pathfinder Dynamics 2 PROJECT BACKGROUND

;A<

the force-sensing actuators of the GRS. Finally, gain coe�cients, �1 and �2 are the
parameters to be solved for that account for discrepancies in the response of the
force-sensing actuators. By substituting equation (2) into equation (1) we obtain:

�gx(t) = �ẍ(t) + �2fx2(t� ⌧2)� �1fx1(t� ⌧1) + !2
2�x(t) +�!2

12x1(t) (3)

It is important to note that the time delay coe�cients, ⌧1 and ⌧2, introduce non-
linear e↵ects, however we can linearize the dynamics with a set of linearized delay
coe�cients.

�jfxj(t� ⌧j) = �jfxj(t)� �j⌧j ḟxj(t) = �jfxj � Cj ḟxj
(4)

It is now possible to rewrite equation (3) in the following form:

�gx(t) = �ẍ(t) + �1fx1(t)� �2fx2(t)� C1ḟx1(t)

+C2ḟx2(t) + !2
2�x(t) +�!2

12x1(t)
(5)

The environment of spacecraft is such that there exists non-zero forces which act
upon TM1 and TM2; these forces are a result of gravitational e↵ects and those
induced by magnetic and/or electrostatic fields. Much like the spring constant for a
spring-mass system, these forces act on the test masses as a result of their relative
motion; this e↵ect is captured by the sti↵ness and di↵erential sti↵ness terms seen in
equation (1) as !2

j and �!2
12 respectively. The individual sti↵ness terms are defined

as follows:

!2
j = !2

j,0 + ↵xjFmax,j + ↵�jNmax,j (6)

Where the !2
j,0 term refers to the background sti↵ness which is used to capture the

gravitational e↵ects and capacitive sensing basis which remains constant through the
duration of the experiment. The force-sensing actuators have maximum Torque and
Force limits applied, hence Fmax,j and Nmax,j. It is important to note that, regardless
of the values specified for maximum force and torque, the force-sensing actuators are
set to maintain LPF at a constant sti↵ness. Parameters ↵xj and ↵�j couple with the
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torque authorities to give the sti↵ness components along the x-axis relative to their
axis of influence; where ↵xj is written as:

↵xj = ��2
V

1

mTMj

@2C⇤
X

@x2

@C⇤
X

@x

(7)

Where C⇤
X ⌘ CX + CX,h is the total X electrode capacitance, where the first term is

the capacitance of the electrode relative to the test mass, and the second term refers
to the capacitance of the electrode with respect to grounding plates. The �2

V term
is used to account for a known mismatch in the reference voltage of the actuation
feedback circuity. The coe�cient for ↵x� is written as:

↵�j = ��2
V

1

mTMj

@2C⇤
X

@x2 � 4

✓
@C⇤

X
@x

◆2

Ctotal

@C⇤
X

@�

(8)

Ctotal gives the total capacitance between the test mass and the surrounding electrode
housing [3]. Given the definition for !2

j , it is now possible to define �!2
12 as being

the di↵erence in the individual sti↵ness of each test mass, and written as:

�!2
12 = !2

2 � !2
1

= !2
2,0 + ↵x2Fmax,2 + ↵�2Nmax,2

�
⇣
!2
1,0 + ↵x1Fmax,1 + ↵�1Nmax,1

⌘ (9)

Equation (3) is now fully defined, however parameters depending on the orienta-
tion of the three bodies that comprise LPF must be taken into account. Therefore,
it is necessary to include additional terms that take this e↵ect into account, one such
parameter is �ifo. The purpose of including �ifo is to capture the e↵ect associated with
the motion of the spacecraft with respect to the OMS optical bench [6]. Henceforth,
�ifo can take on a di↵erent a value depending on the configuration of the system. Dif-
ferences in �ifo include the re-alignment of the test masses, either done intentionally
or by nature of the environment, and/or large fluctuations in temperature. It is then
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necessary to write �ifo ⌘ �ifo, k, where k refers to the di↵erent operational configura-
tions of LPF. It is important to realize that �ifo, k describes a cross-coupling e↵ect
that a↵ects the read-out oppose to a parameter that is a result from the dynamics
of the three-body system. Regardless, it is necessary to include it in the fit in order
to subtract all the signal induced, and perform goodness-of-fit tests to the resulting
residuals. Therefore, equation (3) must be rewritten to include the additional �ifo, k
parameter:

�gx(t) = �ẍ(t)� �2fx2(t) + �1fx1(t) + !2
2�x(t)

+�!2
12x1(t)� C1ḟx1(t) + C2ḟx2(t)� �ifo,kẍ1(t)

(10)

It was later determined that k = {1, 2, 3, 4}, which was done by assuming a fixed
value for �j, Cj and !2

j,0 across all experiments during the duration of the mission
[2]. A summary of all the dynamical parameters used to define the LPF dynamics
model is found in Table 1.

Parameters
�1 ↵x2 (kg�1 m�1)
�2 ↵�2 (kg�1 m�2103)
!2
1,0 (s�2) �ifo,1

!2
2,0 (s�2) �ifo,2

C1 (s) �ifo,3
C2 (s) �ifo,4
↵x1 (kg�1 m�1)
↵�1 (kg�1 m�2⇥ 103)

Table 1: Above is a table that includes a summary all of the parameters used to
construct the dynamics model for LPF. As noted in the prior literature, coe�cients
�ifo,k where k = {1, 2, 3, 4} is classified as a cross-coupling of the read-out rather than
a dynamical parameter; regardless, it must be taken into account to subtract the
induced signal due to the tilt-to-length e↵ect.

It is important to note that the dynamics described by the EOM in equation (10)
give a description of the acceleration noise relative to the x-axis due to the motion
of the test masses and spacecraft. However, in order to obtain a true estimate of
the acceleration noise, denoted as �g(t), factors such as test mass misalignment
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and rotational e↵ects of the spacecraft must be taken into account. Therefore the
complete estimate for acceleration noise is given by the following equation:

�g(t) ⌘ �gx(t) + �gSC(t) + grot(t) (11)

Where the �gSC(t) term is used to account for the misalignment between the test
masses, the GRS and the spacecraft. This misalignment generates a cross-coupling
e↵ect that introduces cross talk signals in the output measurements of the IFO. It
should be noted that the e↵ect described by �gSC(t) is correlated to and influences
the �ifo,k parameter [6]. The grot(t) term accounts for the inertial forces that act along
the x-axis due to the rotation of LPF. Given that LPF is a rotating reference frame,
rotational e↵ects include the fictitious centrifugal force due to spacecraft angular
velocity with respect to the J2000 reference frame, and Euler forces caused by a
non-zero rotational acceleration.

3 Project Approach

As shown in the previous section, to estimate �g(t) would mean to find the pa-
rameters defined by LPF’s dynamics model and correcting for rotational and mis-
alignment factors. The former of which is done by conducting a series of system
identification experiments used to measure the response of LPF and then fitting to
a reference model in order to find the parameters as summarized by Table 1. Hence-
forth, the IRLS method was developed as an approach to perform the fit without
any of the issues faced by previously established fitting techniques. The most impor-
tant of which is being able to conduct the fit without prior knowledge of the noise
in order to obtain an unbiased estimation for the noise environment. Furthermore,
it was shown that when using a linear case for the dynamics, the IRLS method is
equivalent to maximizing the likelihood via a Markov Chain Monte Carlo mapping
of the Logarithmic Likelihood [5]. It is for this reason, that in order to support
objectives (1) and (2) an in-depth understanding of the IRLS method is beneficial.
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3.1 Iterative Reweighed Least Squares

As previously discussed, the IRLS method is used to fit the response of the LPF
system, denoted as ö12(n), to a linear model gm(n) defined by the linear combination
⌃Npar

i=1 ↵ixi(n). In summary we have the following relationship, ö12(n) = gm(n) +
r(n) = ⌃Npar

i=1 ↵ixi(n) + r(n), where the residuals capture any deviations of the data
from the model. Moreover, we have to assume that the residuals are independent
Gaussian random variables, and the time-series xi(n) are perfectly known. Under
this assumption, to find the set of alpha parameters that best describes the data,
or ~↵best, is simply a matter of minimizing the chi-square function. Here we begin
with the definition of the chi-squared using the definitions for our data and reference
model.

�2 =
NdataX

n=1

���ö12(n)�
PNpar

i=1 ↵ixi(n)
���
2

�2(n)
(12)

However, as mentioned in [5], the noise that characterizes ö12(n) is colored, causing
our previous assumption to be nullified. A solution to this problem is to perform the
fit in the frequency domain. Expressed in the frequency domain, the chi-squared is
formally written as:

�2 =
NdataX

k=0

h
ỹ(k)�

PNpar

i=1 ↵ix̃i(k)
i h

ỹ(k)�
PNpar

j=1 ↵jx̃j(k)
i⇤

S(k)
(13)

Where ỹ(k) is the Discrete Fourier Transform (DFT) of the time series ö12(n), x̃(k)
is the DFT of the explanatory time series x̃(n), j is considered to be a free variable
and the asterisk represents the complex conjugate operation. The DFT of some time
series y(n) is defined by the following sum:

ỹ(k) =
1p
Ndata

NdataX

n=1

y(n)w(n)e
�ink 2⇡

Ndata (14)

Where w(n) is a window applied to the time-domain data to reduce spectral leak-
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age, for the purposes of this project, the Blackman-Harris Window (BH96) is selected
due to it is low spectral leakage combined with a reasonable bandwidth and ampli-
tude error. To find the best estimate for the parameters in ↵ is a matter of minimizing
the chi-squared.

@�2

@↵i
=

NdataX

k=0

h
�
PNpar

i=1 x̃i(k)
i h

ỹ(k)�
PNpar

j=1 ↵jx̃j(k)
i⇤

S(k)
+

NdataX

k=0

h
ỹ(k)�

PNpar

i=1 x̃i(k)
i h

�
PNpar

j=1 �ijx̃j(k)
i⇤

S(k)
= 0

(15)

Where �ij refers to the Kronecker-delta used to simplify the sum. By expanding the
numerator of across each sum and simplifying, it is possible to rewrite the equation
above as:

2
NdataX

k=0

Re{x̃j(k)ỹ⇤(k)}
S(k)

� 2

NparX

i=1

↵i

NdataX

k=0

Re{x̃j(k)x̃⇤
i (k)}

S(k)
= 0 (16)

It is now possible to define a matrix A and column vector B such that:

A = 2
NdataX

k=0

Re{x̃j(k)x̃⇤
i (k)}

S(k)
, B = 2

NdataX

k=0

Re{x̃j(k)ỹ⇤(k)}
S(k)

(17)

Using the elements defined in equation (17), equation (16) can be expressed in matrix
notation.

A~↵best = B (18)

To find ↵̃best becomes a matter of applying the left-hand inverse of matrix A to
the equation above.
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A summary for implementing the IRLS algorithm is a follows:

1. Make an arbitrary guess for the noise PSD, i.e. Set all the frequency bins equal
to 1.

2. Run the IRLS algorithm in the frequency domain by inverting equation (18)
by substituting for A and B as desrbed in equation (17).

3. Calculate the new noise PSD using Welch’s method.

4. Repeat steps 2. and 3. until a desired threshold for ~↵ is achieved.

4 Conclusion

During the project period objective (1), to understand and recreate the Iterative
Reweighted Least Squares (IRLS) technique developed by the LISA collaboration,
was successfully realized; along with it came a understanding of the underlying dy-
namics for the LPF satellite. These two key principles have laid the foundation in
order to tackle objective (2) conducting a case study to investigate the impact of
modifying the set of parameters specified to be solved for by the IRLS algorithm;
the results of which could be used to better understand and account for cross-talk.
Plans for the continuation of the project will be discussed with Dr. Daniele Vetrugno
and the coordinators of the UF IREU program.

11 rattob@my.erau.edu



REFERENCES REFERENCES

;A<

References

[1] M. Armano, H. Audley, G. Auger, and J. Baird. Sub-femto-g free fall for space-
based gravitational wave observatories: Lisa pathfinder results. Physical Review
Letters, 116, 06 2016.

[2] M. Armano, H. Audley, and J. Baird. Calibrating the system dynamics of lisa
pathfinder. Phys. Rev. D, 97:122002, Jun 2018.

[3] N. Brandt and W. Fichter. Revised electrostatic model of the lisa pathfinder
inertial sensor. 2009.

[4] G. Racca and P. Mcnamara. The lisa pathfinder mission. Space Science Reviews,
151:159–181, 2010.

[5] S. Vitale, G. Congedo, and R. Dolesi. Data series subtraction with unknown and
unmodeled background noise. Phys. Rev. D, 90:042003, Aug 2014.

[6] G. Wanner and N. Karnesis. Preliminary results on the suppression of sensing
cross-talk in LISA pathfinder. Journal of Physics: Conference Series, 840:012043,
may 2017.

12 rattob@my.erau.edu


