
Stability and Control of a Suspended Pendulum
Fabry-Perot Cavity

Jonathan W. Perry & Daniel D. Brown

Summer 2020

1 Introduction

Simulating the optomechanics and stability of interferometers is an important
step in the development of future gravitational wave detectors and allows for
the detection of troublesome noise signals early in the design process, helping
to further increase the sensitivity of the instrument. Software currently used to
simulate gravitational wave detectors mostly consider only optical interactions
with simple mechanical systems and is therefore unaware of potentially desta-
bilizing frequencies. Instabilities can be introduced by the small oscillations
from optical springs, the strength and stability of which depend on a multitude
of experimental parameters. These optical springs must be considered for the
detector control systems to ensure low noise and reliable operations.

Finesse is an interferometer simulation program in the frequency domain
which aims to simulate not only the optical signals of an interferometer, but also
the mechanical and electrical signals as well. This paper shows how the simple
case of controlling an optical spring in a suspended pendulum Fabry-Perot cavity
might be implemented and simulated in Finesse. More information about how
to install and use Finesse 2 and Pykat [2] can be found on the website [3].

Several steps need to be taken in order to simulate the control of a suspended
pendulum Fabry-Perot cavity. The mechanics of the suspension needs to be de-
fined and combined with the radiation pressure inside the cavity. This produces
the optomechanical feedback process known as optical springs, the behavior of
which depends upon the propagation of the optical field. Once able to reliably
determine the stability of the system, a Pound-Drever-Hall error signal then
needs to be generated and included in a control loop. Each of these features
must be functioning before everything can operate correctly. This paper uses a
pre-alpha stage version of Finesse 3 [6] and a few bugs were encountered along
the way which have been fixed or will be soon.

1

2 Simulation Basics

It only takes a few lines of code to simulate a simple laser and mirror setup in
Finesse. The following example uses the Finesse scripting language katscript
[7] to create a simple setup with a laser component l1, space component s1,
and mirror component m1. Each component has a number of ports available,
each with a set of input and/or output nodes of various types. For specifics
on components and the ports available to them, see the documentation [12].
In this example, the space component s1 is connecting the optical port of the
laser l1.p1 to one of the optical ports of the mirror m1.p1. A signal sig with
frequency set by fsig is then generated and sent to the longitudinal force node
of the mirror’s mechanical port m1.mech.F z e↵ectively applying a 1 N force
to the mirror every second. The motion of the mirror is then detected using
an amplitude detector ad reading from the longitudinal position node of the
mirror’s mechanical port m1.mech.z at the signal frequency denoted by &fsig.
The signal frequency fsig.f is then swept from 0.01 Hz to 1000 Hz on a log
scale with 1000 steps. Finally, the model is run to determine the output at each
of the detectors.

After running the simulation, the returned solution tree contains all of the in-
formation provided by the detectors in addition to a convenient plot() method
to quickly plot the results. In this particular example, however, the detec-
tor detects no motion. This is because in order for the applied force to a↵ect
the mirror’s position, the motion of the mirror needs to be defined by a me-
chanical force-to-motion transfer function. The next section will discuss how
to determine and implement this mechanical transfer function for a suspended
pendulum.

1 # create new kat model

2 kat = finesse.Model ()

3

4 # parse katscript

5 kat.parse(

6 """

7 l l1 # laser

8 s s1 l1.p1 m1.p1 # space

9 m m1 # mirror

10

11 fsig 1 # signal frequency

12 sgen sig m1.mech.F_z # 1 N @ &fsig to mirror

13

14 ad z m1.mech.z &fsig # detect motion

15

16 xaxis fsig.f log 1e-2 1e3 1000 # sweep frequency

17 """

18)

19

20 # run simulation

21 sol = kat.run()

Listing 1: Simple Finesse simulation.

2

3 Implementation of the Pendulum

We want to know how a system behaves in the frequency domain when an
external force Fext is introduced. By default, the mirrors are static and unable
to respond to forces. To simulate the suspension of a mirror, the equations of
motion need to be transformed into the frequency domain. This is accomplished
using the Laplace transform which transforms a function of time t into a complex
function of frequency s = � + i!.

L(f(t))(s) =
Z 1

0
f(t)e�stdt = F(s) (1)

The Laplace transform has the convenient e↵ect of transforming the di↵erential
equation into an algebraic equation. The mechanical transfer function H(s) can
then be defined as the ratio of the input force Fext(s) and the resulting motion
Z(s).

H(s) =
Z(s)

Fext(s)
(2)

For a damped pendulum with natural frequency !0, quality factor Q and as-
suming a small angle, the mechanical transfer function as a function of complex
frequency s is defined as:

Hpend(s) =
1

m(s2 + !0
Q s+ !2

0)
(3)

The transfer function can then be written as a function of a real valued frequency
⌦ after substituting s = i!:

Hpend(⌦) = � 1

m(⌦2 � i !0
Q ⌦� !2

0)
(4)

The transfer function can then easily be modified for a free mass by assuming
!0 = 0:

Hfree(⌦) = � 1

m⌦2
(5)

This transfer function is then used to define the force-to-z coupling in a new
mechanical component which can be attached to the mirror’s mechanical port
using the model’s add() method before running the simulation. The full code
for the pendulum can be seen in the additional listing in Appendix A.

1 # add pendulum suspension to mirror

2 kat.add(

3 Pendulum (" m1_sus", kat.m1.mech , mass=1, w0=1, q=1000)

4)

Listing 2: Adding the pendulum to the mirror.

3

Figure 1: Plot showing the same output for analytic solution and Finesse
output when provided various inputs.

To ensure correct implementation, the analytical solution can be compared to
the solution provided by Finesse as seen in Figure 3 where the transfer functions
for various pendulum parameters have been plotted.

Now that the pendulum has been implemented, the complexity of the sim-
ulation can be increased by adding a second mirror and creating a Fabry-Perot
cavity.

4 Fabry-Perot Cavity

A Fabry-Perot cavity is a simple, linear, two-mirror optical cavity with a circu-
lating power dependent on the cavity’s length and/or frequency of light being
circulated (Figure 4). Assuming a cavity with input power P0 from a laser
beam with wavenumber k = 2�/� incident to parallel input and end mirrors
with transmissivities T1, T2 and reflectivities R1, R2, respectively, and a cavity
length of L, the circulating power can be written as [1]:

Pcirc = P0
T1R1

1 +R1R2 � 2
p
R1R2 cos 2kL

(6)

Due to the periodicity of light, it is often useful to break the length of the
cavity into two terms; L = z0 + �z with z0 defined as being ”on resonance” or

4

Figure 2: Diagram of a simple Fabry-Perot cavity with detectors for reflected
power, circulating power, and transmitted power [8].

an integer number of wavelengths z0 = N� = 2⇡N/k and �z as a displacement
from resonance relative to one wavelength �z = �/k where � is measured in
radians. The circulating power in the cavity can then be written as a function
of this detuning from resonance �:

Pcirc(�) = P0
T1R1

1 +R1R2 � 2
p
R1R2 cos 2�

(7)

The circulating, reflected, and transmitted power can be simulated in Fi-
nesse with the following example. Here, the laser is linked to the cavity using
the link command which automatically connects the appropriate ports and
nodes depending on signal type. Three power detectors have also been added
to detect the power of the beam circulating within or leaking out through the
cavity as the value of phi is swept into and out of resonance. As seen in both
the output of Finesse (Figure 4) and Equation (7) the circulating power sym-
metrically reaches a maximum while perfectly on resonance.

It should also be noted the circulating power is significantly higher than the
input power of 1 W. If one of the mirrors is suspended, this accumulation of
power leads to an optomechanical e↵ect known as an optical spring which cou-
ples the radiation pressure force caused by the circulating power to the motion
of the mirror.

5 Optomechanics

5.1 Radiation Pressure

Light carries momentum and therefore exerts a radiation pressure force when it
reflects o↵ of a surface. The radiation pressure force felt by a perfectly reflective

5

Figure 3: Output for a simple Fabry-Perot cavity with an input power of 1
W detecting the reflected, circulating, and transmitted power as a function of
detuning phi.

mirror is proportional to the power of the incident beam [9].

Frp(⌦) =
2P (⌦)

c
(8)

For the end mirror of a Fabry-Perot cavity, it follows that a su�ciently high
circulating power can cause a significant amount of radiation pressure to build
inside the cavity. When considering the mechanics of suspended mirrors, this
additional force needs to be considered.

5.2 Optical Spring

Due to the circulating power’s dependence on the position of the end mirror,
an optomechanical feedback process occurs which couples the fluctuations in
circulating power to the motion of the mirror. The circulating power contributes
to the radiation pressure force which causes displacement in the position of the
mirror which in turn feeds back into the circulating power, closing the loop.
This means the radiation pressure force on the mirror is position dependent.
For the adiabatic situation in which the length of the cavity is su�ciently small
compared to the speed of light, the definition of a spring constant, or, in this
case, an optical spring constant, is the derivative of this position dependent
force.

kopt = �dF (z)

dz
= � d

dz

2Pcirc(z)

c
=

�8P0
p
R1R2kT1 sin (2kz)

c(1 +R1R2 � 2
p
R1R2 cos (2kz))2

(9)

6

Figure 4: Optical spring constant plotting alongside the circulating power show-
ing stable and unstable regions based upon positive and negative detunings of
phi. Not to scale. [1]

Plotting the spring constant about resonance (Figure 5.2), two regions become
evident. With positive detunings which lengthen the cavity there exists a restor-
ing force kopt < 0 which is statically stable, and with negative detunings there
exists an anti-restoring force kopt > 0 which is statically unstable. It is also
worth noting there is no spring kopt = 0 when the cavity is perfectly resonant.

For the full, non-adiabatic optical spring, the time delayed response of the
cavity leads to the spring constant taking on a more complicated, complex form
(⌦) showing a dynamic, oscillatory behavior dependent upon the length of the
cavity L:

(⌦) = �8kPcr1 sin 2�

c

e�i2⌦
c L

1 +R1e�i4⌦
c L � 2r1e�i2⌦

c L cos 2�
(10)

The radiation pressure force Frp(⌦) can then be written using this complex-
valued optical spring coe�cient:

Frp(⌦) = (⌦)�z(⌦) (11)

A new mechanical transfer function can be obtained with the same process as
Equation (4) but with the addition of the radiation pressure force:

H(⌦) = � 1

m(⌦2 � i !0
Q ⌦� !2

0)� (⌦)
(12)

7

6 Stability

As previously mentioned, the stability of the system is dependent upon the de-
tuning of the end mirror. If the mirror is detuned below resonance, shortening
the cavity, the system is statically unstable and if it is detuned above resonance,
lengthening the cavity, the system is statically stable. The time delayed response
of the circulating power caused by the motion of the mirror leads to the stat-
ically stable situation being dynamically unstable and the statically unstable
situation being dynamically stable. This can be understood by recognizing that
the delayed response of the circulating power caused by the external force will
have a tendency to be stronger when tuned above resonance than when tuned
below.

6.1 Poles & Zeros

The mechanical transfer function can be further analyzed to quantitatively de-
termine the stability of the system. The numerator and denominator of the
transfer function can be factored into its roots to extract its zeros z, poles p,
and gain k:

H(s) = k

QNz

i=1(s� zi)
QNp

j=1(s� pj)
(13)

The poles will then provide information on the stability of the system. Any
poles which exist on the right-hand side of the complex plane will result in the
system being unstable. This is because of the positive exponent in the inverse
Laplace transform (Equation 14) which causes any value of s with a positive
real part to be unbounded when transforming back into the time domain:

L�1{F(s)}(t) = 1

2⇡i
lim

T!1

Z �+iT

��iT
estF(s)ds (14)

6.2 Fitting the Transfer Function

To determine the poles and zeros of the output produced by Finesse, a fitting
algorithm must be used. The algorithm typically used to fit transfer functions
is Vector Fitting, also known as vectfit [11], which distributes likely poles
and iterates linear problems to maneuver them into place. When testing for
stability with known random poles we found vectfit to work well but would
become increasingly divergent with additional poles. Another algorithm known
as fittf [10] was found to be more consistent for our purposes when tested
against higher numbers of known poles.

8

+� 16.11668693 + 0.j �16.12358358 + 0.j
�� 0.00344833 + 16.12013231j 0.00344833� 16.12013231j

Table 1: Poles produced by fittf for positive and negative detunings of phi.

Figure 5: Poles and zeros on the complex plane for positive and negative values
of phi. Poles on the right-hand side imply an unstable system.

With the algorithm returning fitted poles and zeros, the poles and zeros could
then be plotted on the complex plane for positive and negative detunings of phi
to see if the system is stable in that region. As seen in Figure 5, for positive
values of phi the transfer function has two real-valued poles and for negative
values the transfer function has one complex-valued pole. Table 1 shows the
pole values which describes both regions as unstable since both contain poles
on the right-hand side of the complex plane. The positive real-valued pole
corresponds to the statically unstable situation while the positive real part of
the complex-valued pole corresponds to the dynamically unstable situation.

The goal is now to design a controller which feeds a signal back into the
system and shifts the poles to the left-hand side of the complex plane, thus
stabilizing the system.

7 Simple Feedback Example

This section will go through an example of a simple feedback system, briefly
explaining how one might develop a model mathematically. The following ex-
ample uses a photodiode to read the power output of a laser and then feed the

9

Figure 6: Block diagram representing a simple feedback system.

signal through a low-pass Butterworth filter F and back into the amplitude of
the laser. The feedback loop can be toggled open or closed with an amplifier
G. A generated signal is then modulated into the amplitude of the laser and
detected both after the photodiode and after the filter. The Butterworth filter
gain can then be adjusted to control

1 # create new kat model

2 kat = finesse.Model ()

3

4 # parse katscript

5 kat.parse(

6 """

7 l l1 # laser

8 m m1 # mirror

9 photodiode pd1 # photodiode

10 butter F 4 lowpass 100 # lowpass Butterworth filter

11 amp G gain=1 # loop toggle

12

13 link l1 pd1 F G l1.amp # feedback into laser

14

15 fsig 1 # 1 Hz signal

16 sgen sig l1.amp.i 1 0 # generate signal on amplitude

17

18 ad b pd1.p2.o f=&fsig # detect signal after photodiode

19 ad a G.p1.i f=&fsig # detect signal after filter

20

21 xaxis fsig.f log 1 1e3 1000 # sweep signal frequency (Hz)

22 """

23)

Listing 3: Simple feedback example with Butterworth filter

The block diagram for this example can be seen in Figure 7. Each block rep-
resents a component and each connection represents input and output signals.
Each component can be represented mathematically as a transfer function and
each output can be written as the composite of the inputs:

b = O(P0 +G(F (b))) (15)

a = F (b) (16)

10

Figure 7: Plots produced by a simple feedback system for various gains which
match the developed mathematical model.

By assuming all functions are linear, the output can be solved algebraically to
determine the transfer function between the input P0 and output signal:

b =
O

1�OGF
P0 (17)

a =
OF

1�OGF
P0 (18)

After defining transfer functions for the optical readout O, Butterworth filter
F, and closing the feedback loop with G = 1 (Appendix B), the output can be
plotted versus frequency. Figure 7 shows the resulting plots for the closed-loop
output signal b provided various filter gains.

It is important to recognize that by changing the filter gain, the impact the
feedback has on the stability of the system changes as well. Compared to the
open-loop solution (Gain = 0) in which all frequencies produce the same output,
certain gains (Gain = 0.99,�1) produce stable systems where greater negative
gains produce unstable systems. It is the role of the controller to determine this
gain depending on the desired output.

11

Figure 8: Diagram of the Pound-Drever-Hall technique.

8 Feedback & Control

In order to control the mirror, a error signal needs to be produced by the cavity
which is capable of determining which direction a force must be applied to
correct for any change in length. Simply reading the power output inside or
outside of the cavity is not enough due to the symmetry about resonance as
seen in Figure 4. One way of producing this error signal is with the Pound-
Drever-Hall technique.

8.1 Pound-Drever-Hall Signal

The Pound-Drever-Hall technique was originally developed to lock the frequency
of a laser to the length of a Fabry-Perot cavity [5], but can similarly be used to
lock a cavity length to the frequency of a laser.

To produce the signal, the laser is first phase modulated prior to entering the
cavity and then demodulated with a mixer using the reflected beam escaping
the cavity (Figure 8). The reflected beam will be proportional to the incident
beam but will experience some amount of phase shift when the length of the
cavity changes. The resulting signal (Figure 9) is anti-symmetric about res-
onance with it being positive for negative detunings and negative for positive
detunings, therefore providing an error signal appropriate for use in determining
the direction in which the cavity has changed.

1 kat.parse(

2 """

3 l l1

4 s s0 l1.p1 phasemod.p1 L=0.1

5 mod phasemod 80M 0.3 1 pm # phase modulation

6 s s1 phasemod.p2 m1.p1 L=0.1

7

8 m m1 T=0.015 L=0

9 s scav m1.p2 m2.p1 L=0.2

12

10 m m2 T=0.015 L=0

11

12 pd1 demod m1.p1.o 80M 0 # demodulation

13

14 xaxis m2.phi lin -50 50 500

15 """

16)

Listing 4: Example Finesse code to produce Pound-Drever-Hall signal

Figure 9: Example signal produced by the Pound-Drever-Hall technique.

8.2 Controlling the Cavity

Now that we have a signal capable of acting against the change in the cavity,
the last step is to feed the signal through a filter to scale it before sending it to
an actuator attached to the mirror which will convert the electrical signal into
a force (Figure 10).

1 kat.parse(

2 """

3 l l1 # laser

4 mod modulator 80M 0.3 # modulator

5 beam_splitter bs # beam splitter

6 m m1 R=0.99 L=0 # front mirror

7 s scav m1.p2 m2.p1 L=0.2

8 m m2 R=1 L=0 # end mirror

9 photodiode1 demod f=80M # demodulating photodiode

10 filter_zpk G [] [0] 1000 gain=1 # filter

11 actuator act m2.mech.F_z # actuator on end mirror

12

13 # connections

13

14 link l1 modulator bs m1 # laser ->mod ->bs ->cavity

15 link bs.p4 demod G act # bs ->demod ->filter ->actuator

16

17 fsig 1 # 1 Hz signal frequency

18 sgen sig2 m2.mech.F_z amplitude =1 # apply a signal to m2

19

20 ad z2 m2.mech.z &fsig # detect motion of m2

21

22 xaxis fsig.f log 1e-2 1e3 1000

23 """

24)

25 kat.add(pendulum.Pendulum (" m2_sus", kat.m2.mech , w0=0))

26

27 out = kat.run()

Listing 5: Approximate Finesse 3 code to stabilize a suspended pendulum
Fabry-Perot cavity

NOTE: The above code does not actually stabilize the cavity and instead repre-
sents the status of the simulation before the project was able to be completed.
Future work will involve determining the correct zpk filter configuration to sta-
bilize the cavity and the paper will be updated accordingly.

Figure 10: Pendulum amplitude after applying filtered Pound-Drever-Hall con-
trol signal.

14

9 Conclusion

The features added to Finesse 3 allow for the simulation of multiple signal
types and feedback loops. This includes the motion of a pendulum by defining
a transfer function in the frequency domain via the Laplace transform. By
suspending the end mirror of a Fabry-Perot cavity with the implementation of
the pendulum, interesting and challenging optomechanical e↵ects involving the
radiation pressure from the circulation power (namely optical springs) arise.
These optical springs can cause the system to become unstable and must be
controlled by providing a corrective feedback signal. The Pound-Drever-Hall
technique uses the reflected power leaking out of the mirror to determine the
sign of this corrective signal which is then used to control the length of the
cavity thus stabilizing the system.

In addition to combining the necessary steps to control the cavity, it was
determined that vectfit was insu�cient for what was needed on a larger scale
and that Finesse 3 will require something more suitable to be developed, most
likely a custom fitting routine.

The greater vision of Finesse is to provide a platform for the simulation
of complicated feedback systems involving multiple types of signals which far
exceed the scope of this paper. The reader is invited to learn more about
Finesse and its recent developments at the Finesse homepage [3, 6].

10 Acknowledgements

Thank you to Daniel Brown at the University of Adelaide for his mentoring
and patience while working on this project. Also, thank you to the entire Fi-
nesse development team for their acceptance into their weekly developer calls,
specifically Andreas Freise at Vrije Universiteit Amsterdam for his accessible ex-
pertise and Philip Jones for willfully helping to find errors. Additional thanks
to Paul Fulda and Peter Wass at the University of Florida for their mentor-
ing (and patience) and organizing the remote program under the added strains
of COVID-19, this was surely not a simple task. And thank you to the Na-
tional Science Foundation for funding this opportunity to perform international
research through grants #1460803 and #1950830.

15

References

[1] Charlotte Bond et al. “Interferometer techniques for gravitational-wave
detection”. In: Living reviews in relativity 19.1 (2016), p. 3.

[2] Daniel D. Brown et al. Pykat: Python package for modelling precision

optical interferometers. 2020. arXiv: 2004.06270 [astro-ph.IM].

[3] Daniel David Brown and Andreas Freise. Finesse. The software and source
code is available at http://www.gwoptics.org/finesse. May 2014. doi:
10.5281/zenodo.821363. url: http://www.gwoptics.org/finesse.

[4] Stephen Butterworth et al. “On the theory of filter amplifiers”. In: Wire-

less Engineer 7.6 (1930), pp. 536–541.

[5] RWP Drever et al. “Laser phase and frequency stabilization using an
optical resonator”. In: Applied Physics B 31.2 (1983), pp. 97–105.

[6] Finesse 3 Docs. url: https://finesse.docs.ligo.org/finesse3/.

[7] Finesse Syntax Reference. url: http://www.gwoptics.org/finesse/
reference/.

[8] Learn Laser Interferometry with Finesse: Resonance. url: http://www.
gwoptics.org/learn/02_Plane_waves/01_Fabry_Perot_cavity/01_
Resonance.html.

[9] Pierre Meystre et al. “Theory of radiation-pressure-driven interferome-
ters”. In: JOSA B 2.11 (1985), pp. 1830–1840.

[10] Ahmet Arda Ozdemir and Suat Gumussoy. “Transfer function estimation
in system identification toolbox via vector fitting”. In: IFAC-PapersOnLine

50.1 (2017), pp. 6232–6237.

[11] PhilReinhold. vectfit.py. url: https : / / github . com / PhilReinhold /
vectfit_python.

[12] Using Finesse: The Port and Node System. url: https://finesse.
docs.ligo.org/finesse3/usage/nodesystem/.

16

A Additional Listings

A.1 Pendulum.py

1 class Pendulum(Connector):

2 """ Suspended pendulum.

3

4 The object being suspended must have a mechanical port with

5 nodes z, pitch , and yaw and forces F_z , F_pitch , and F_yaw.

6 """

7 def __init__(self , name , mech_port , mass=1, w0=1, q=1):

8 super().__init__(name)

9 self.mass = mass

10 self.w0 = w0

11 self.q = q

12 ...

13

14 # Add motion and force nodes to mech port.

15 # Here we duplicate the already created mechanical

16 # nodes in some other connector element

17 self._add_port ("mech", NodeType.MECHANICAL)

18 self.mech._add_node ("z", None , mech_port.z)

19 self.mech._add_node ("F_z", None , mech_port.F_z)

20 self._register_node_coupling (" F_to_Z", self.mech.F_z , self.

mech.z)

21 ...

22

23 ...

24

25 def fill(self , ws):

26 f = ws.sim.model_data.fsig

27 w = 2*np.pi*f

28 w0 = 2*np.pi*self.w0

29 with ws.sim.component_edge_fill3(

30 ws.owner_id , ws.connections.F_to_Z_idx , 0, 0, False ,

31) as mat:

32 mat [:] = -1/(self.mass*(w**2-w0**2-w*w0/self.q*1j))

Listing 6: Partial code for Pendulum object with the mechanical transfer
function located on line 32. Removed but necessary code replaced with ’...’
see source for full implementation.

17

B Transfer Functions for Simple Feedback

This appendix is dedicated to explaining the transfer functions for the optical
readout O, Butterworth filter F , and closed-loop toggle G.

B.1 Optical Readout O

For amplitude modulation, the output field of a laser beam with modulation
index m can be described by the following:

E = E0e
i!0t(1� m

2
(1� cos(⌦t))) (19)

The light power P as seen by a photo detector is:

P = EE⇤ = P0(1�
m

2
(1� cos(⌦t)))2 (20)

Expanding this out we get:

P (t) = P0(1�m(1� cos(⌦t)) +
m2

4
(1� 2cos(⌦t) + cos2(⌦t))) (21)

By assuming a small modulation index m ⌧ 1 we get:

P (t) = P0 � P0m� P0m cos⌦t (22)

We’re interested in the oscillating term as this tells us how a small signal prop-
agates from the applied laser amplitude modulation to what the photodiode
measures. The power fluctuations at the frequency of the injected signal ⌦ is
then:

P (⌦) = P0m (23)

B.2 Butterworth Filter F

A Butterworth filter is a low-pass filter which aims to provide maximally flat
frequency response in the passband below the cuto↵ frequency [4].

The transfer function is defined with DC gain G0, cuto↵ frequency !c and
poles sk. How steep the signal drops o↵ is defined by the number of poles n.

H(s) =
G0Qn

k=1(s� sk)/!c
k = 1, 2, 3, ..., n (24)

Where the poles sk are defined by:

sk = !c exp
i(2k + n� 1)⇡

2n
(25)

18

Here is an example implementation of the Butterworth filter transfer function
using Python.

1 ## Low -pass Butterworth Filter

2 ## fs: frequency domain

3 ## fc: frequency cutoff

4 ## n: order

5 ## g: gain

6 def butterworth(fs , fc , n, g):

7 ws , wc = 2*np.pi*np.array([fs, fc]) # angular frequencies

8 s = 1.0j*ws # complex phase

9 H = g*wc**n # apply gain

10 for k in np.arange(1,n+1):

11 H *= (s-wc*np.exp ((2*k+n-1) /(2*n)*np.pi*1j))**-1

12 return H

Listing 7: Butterworth filter implementation in Python

B.3 Closed-loop Toggle Gain G

This transfer function is either 1 to close the loop and produce a closed-loop
system or 0 for an open-loop system in which there is no feedback. Figure 11
aims to illustrate this idea more clearly.

Figure 11: Illustration of open-loop versus closed-loop.

19

