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The goal of this paper is to both document our progress towards developing a software-injection
algorithm which can be used to analyze continuous waves from binary sources in real data noise,
and to provide a clear and accessible discussion of the way continuous wave data can be processed
using spectrograms, which display data in the time-frequency domain, and power spectra, which
utilize the frequency-power domain. We consider the ways that waves from binary sources differ
from isolated ones when viewed in these different parameter spaces, and the variation in binary
source waves that we must consider in our detection procedures. This is an important prerequisite
for understanding the Rome group’s existing continuous wave search algorithm, which relies on
the characterization of binary source waves as a ’double horn’ shape which appears firstly in the
wave’s power spectrum. We also foresee the necessity of a machine learning algorithm to be used
to eventually distinguish between real detected signals and false positives which are the result of
instrumental artefacts. We thus discuss a potential search method that such an algorithm could

utilize to search for binary waves in the frequency domain.

I. INTRODUCTION

In September of 2015, the first detection of gravi-
tational waves was confirmed by the advanced LIGO
interferometers [2]. This detection, due to the coalescing
of two black holes, established the blossoming of the field
of gravitational wave astronomy. Using gravitational
wave detections, we expect to be able to observe features
of astrophysical systems invisible to us using only
electromagnetic observation techniques. In addition
to the transient waves of the type detected in 2015,
continuous waves form an undetected, yet auspicious
class of signals. Continuous gravitational waves are
predicted to be emitted by rapidly rotating Neutron
stars (NSs), both from isolated cases and from binary
pairs of NSs [3]. The Rome group at La Sapienza focuses
on the detection of binary pairs of neutron stars. This
forms a promising class of signals, as an order of 108
of these objects are expected to exist in the Galaxy
[1]. However, traditional detection methods used for
transient waves are not effective for detecting continuous
waves from binary pulsars. This is partially due to
the weakness of such continuous signals, and thus the
increased integration time necessary to recover them.
Therefore, one major challenge in these continuous wave
detections is accounting for computational efficiency and
minimizing computational cost.

Another challenge faced is the strength of the detector
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noise, including instrumental lines, which obstruct true
detections by suggesting many false positives. In existing
literature, the Rome group has successfully designed
an algorithm that can detect injected binary signals in
Gaussian white noise, but which is not perfectly able to
distinguish signal peaks from those due to data noise [5].
Thus, in the presence of instrumental lines this algorithm
would return false detections. This has motivated a
quest for a machine learning algorithm that could train
the algorithm when a detection is false through repeated
trials and methods of artificial intelligence.

In this paper, we outline a process that has been
refined and simplified to inject simulated signals from
binary pulsars into Gaussian noise, and eventually real
detector noise and data. Developing this algorithm is a
preparatory step to testing a future machine algorithm
to do detections in the time-frequency domain in both
real and whitened noise.

We also discuss an alternate method with which a
machine learning algorithm could work on detection
in a frequency-power domain, by viewing the signal
as a Power spectrum. Through analyzing the power
spectrum, it is easier to see how the wave signal is
affected by variation in orbital parameters of the source
binary. It is also clear that waves from isolated sources
and those from binary sources appear as very different
shapes in the frequency domain, confirming that differ-
ent algorithms that are specific to detections from each
source type is necessary.
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II. INJECTIONS OF BINARY SOURCE
SIGNALS

We have fixed an algorithm that works to inject fake
signals from binary pulsar sources in existing data or
noise. This algorithm has been fixed for simplicity, as
existing codes which do these injections are more compu-
tationally intense and require the use of other intermedi-
ate file types which this algorithm doesn’t require. This
process inputs a short fast-Fourier Transform database
(SFDB), which is created by dividing the data in time se-
ries into interlaced chunks of length Tr g7, or the chosen
coherence time. This Trpr must be chosen to be small
enough as to confine the signal power into a frequency
bin [5]. The algorithm then outputs the injections in
the form of peakmaps, which represent data in the time-
frequency domain. Peakmaps are created by selecting
only the time-frequency peaks which are above a given
threshold which is chosen to filter out average leveled
noise[5]. It is these peakmaps that the Rome group’s ex-
isting algorithm works on, as they take the filtered peaks
and apply a set of filters in order to exaggerate a signal
in the presence of noise [3].

In order to inject the correct signal, we must consider
the modulation effects from both the motion of Earth
and of the binary source pair on the expected observed
waveform. The effect of the modulation due to the mo-
tion of the Earth on the expected waveform can be found
in the references [4].

A. Binary Source Modulation

In order to inject a continuous wave signal from a bi-
nary pulsar source, we must consider the modulation on
the wave signal that we would receive as an observer if
the emitting source was in binary orbit. To do this, we
characterize binary sources using a modified version of
the five Keplerian orbital parameters. These include ec-
centricity, argument of periapsis, time of ascension node,
orbital period, and a factor called a, which is calculated
as

a, = asin(i)/c (1)

with a being the the semi-major axis and i the inclination
angle.

The modulation of the wave signal due to binary source
motion is analyzed through an addition of Binary Romer
Delay. In contrast to an isolated pulsar, gravitational
waves from an orbiting pulsar will not be observed with
a constant frequency by a stationary observer. We ana-
lyze the new waveform by considering a pulsar in orbit,
such that in its frame of reference it is emitting waves of
constant frequency. As the pulsar orbits its binary com-
panion, it emits these waves at varying distances from
the observer, such that the distance that the wave must
travel to meet us varies periodically. This difference in
distance is analytically equivalent to a stationary source

pulsar emitting waves with a corresponding difference in
time.This 'time delay’ with which we observe incoming
continuous waves from binary sources is called Binary
Romer Delay. We consider a small eccentricity approxi-
mation, and define
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P(t) = = (t -

P tasc) (2)

with P being the orbital period and ¢,s. the time of ascen-
sion node. Then, Binary Romer Delay can be calculated
by

R
== ay(sing(t) + gsian(t) - gcosw(t)) (3)
c
with kK = ecosw and 77 = esinw where w is the frequency
[4]. Subtracting this time delay from a standard time
vector, we are able to account for the binary source mod-
ulation.

III. VISUALIZING CONTINUOUS WAVES
USING POWER SPECTRA

Power spectra allow us to analyze signals in the
frequency-power domain. Understanding the variation
in the shape of the signal in the power spectrum helps us
understand the variation that a future machine learning
based detection algorithm should be able to reconcile.
They also illuminate clearly the source of the ’double
horn’ shape used for detection in white noise in the Rome
group’s existing work [5].

A. Isolated Pulsars

In our first test we inject a simple sine wave into Gaus-
sian white noise, in order to illuminate the process of
creating a Power Spectrum and in order to eventually
compare with modulated signals. The injected sine wave
of the form U = Asin(2wft) simulates an isolated pul-
sar rotating at a fixed frequency with no modulation.
The lack of modulation implies that both the source and
the observer are fixed in space. This signal is injected
into white noise, and a Fourier Transform coherence time
is chosen. The choice of this coherence time will affect
the visibility of our signal, as we will later explore. The
dataset is divided into sections of coherence time length,
and a Fast Fourier Transform (FFT) is applied to each
section. (Note that we don’t use interlaced bin times in
this test, but this is another option for more robust de-
tection in real data). This converts the data from the
time-space domain to the time-frequency domain, as the
FFT returns the set of frequencies that the signal in that
coherence time bin can be decomposed into.  For our
simple sine wave, only a single frequency stands out. This
frequency is constant in time, such that the FFT will
return the same strongest frequency in every coherence
time bin. A spectrogram is created by combining the
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FIG. 1. A spectrogram for an isolated pulsar rotating at con-
stant frequency and with no signal modulation.
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FIG. 2. A power spectrum plot for an isolated pulsar rotating
at constant frequency and with no signal modulation.

FFT data from each coherence time bin into one plot,
such that we have time on the abscissa and frequency on
the ordinate and the signal strength at each frequency is
distinguished by a color map. This spectrogram is shown
in Fig. 1.  Taking the time average across all repeated
bins of coherence time, we arrive at a Power Spectrum
plot as in Fig.2., in which we can see the signal in the
frequency domain. In this case, there is a strong single
peak at the frequency of the injected wave.

B. Binary Pulsars

We use the same characterization of binary sources dis-
cussed in section II to find the spectrogram for a binary
source wave. We add the binary modulation given by the
Binary Romer delay, and inject our new signal by adding
it to white Gaussian noise. We then follow the same pro-
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FIG. 3. A spectrogram for a binar pair of pulsars.
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FIG. 4. A power spectrum plot for a binary pair of pulsars.

cess as before, where we divide the data into sections of
the length of the FFT coherence time and perform FFTs
on each section, recombining the sectioned plots at the
end. We obtain the spectrogram shown in Fig. 3. We
now see an oscillating frequency which is characteristic
of the binary source motion.

When we take the time average now, we obtain a
shape characterized by a ’double horn’ feature, as seen
in Fig. 4. This double horn is due to the oscillating fre-
quency discussed. Taking different orbital parameters,
the qualities of this ’double horn’ change. Understand-
ing this variation is an important prerequisite for writing
an algorithm that can detect waves from a wide range of
potential source binaries.



0.07 T T T

. + data
0.06 | ’ fitted curve | |

Signal Strength (unnormalized)

\ \ \ \ \ \ \
6 318 32 322 324 326 328 33 332
Frequency (Hz)

-0.01 '
312 314 31

FIG. 5. Example of a double Gaussian best-fit procedure
applied to the data with an injected binary signal

IV. A POTENTIAL DETECTION STRATEGY
FOR MACHINE LEARNING

In order for a future machine learning algorithm to
search for continuous waves from binary systems in the
power spectra, we propose one potential method, using
a double Gaussian fit. The ’double horn’ shape may be
approximated by a function given by the addition of two
Gaussians, of the form

l‘—bl
cl

l‘—bg

2@

where al, bl, cl, a2, b2, c¢2 are independent parameters,
and exp indicates the exponential function. The param-
eters al and a2 are proportional to the heights of the two
respective peaks, bl and b2 correspond to the central
frequency of each peak, and cl and c¢2 to the widths
of each peak. If we assume that the source orbit has
low eccentricity, we can set al = a2 and cl = c2, thus
reducing our number of parameters to 4 from 6, greatly
reducing computational power required. An example
of a double Gaussian best fit procedure can be seen on
an optimized wave in Fig. 5. The signal in this case
has been optimized for maximal visibility, by setting a
zero argument of periapsis and a high semi-major axis,
as well as a zero eccentricity as previously discusses.
This plot is meant to show an example the fit of the
Gaussian curve on the signal data. However, because of
the multitude of noisy data points compared to signal
points, applying a double Gaussian best fit procedure
to random sections of data is an ineffective way for an
algorithm to recognize a signal. The data points of
pure noise tend dampen the best fit, often returning a
nonexistent fit unless manually zoomed in to the injected
signal sufficiently.

Instead, we developed a method of signal recognition
which returns the four-parameter double Gaussian that
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FIG. 6. Cross-correlation between a single double Gaussian,
chosen randomly within manually set limits, and the data
with an injected binary signal

optimizes a fit to the signal at the correct localized
frequency. This is done by creating a four dimensional
parameter space, and taking a grid across that space
with desired fineness and limits, depending on the
computational strength available. The grid used in this
example was chosen by first performing a double Gaus-
sian best fit, in order to determine a close enough grid
so that we could minimize the computational expense of
this test. The limits of the parameter space grid where
chosen to be a small interval around the optimized fit
parameters. The grid is made of a set of four-dimension
points spanning the space, with a uniform separated by
0.01 unit in each direction.

Each ’point’ is defined by the four parameters, such
that it defines a single and unique double Gaussian
curve. This particular double Gaussian curve is created
for every point in the grid and cross-correlated with
the available data.The double Gaussian is shifted
across the data in the frequency domain and cross
correlated at each frequency, returning a vector which
contains the correlation strength for the curves at each
central frequency. The example output of a single
cross-correlation is given by Fig. 6., where there is a
defined peak at the moment the central frequency of
the double Gaussian matches that of the injected signal.
By repeating this cross-correlation with every point in
our four dimensional grid, we find that a single double
Gaussian created correlates the most strongly with the
data, as seen by the top curve in Fig. 7. Taking the
parameters of the top curve’s double Gaussian, as well
as the frequency of its peak, we are returned with the
approximate location of a suggested signal, and the
approximate shape of such signal.

However, in cases where the approximate location of
the wave is not known, and we are not able to construct
such a limited grid as we have done as a test, a much
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FIG. 7. Cross-correlation between a a set of double Gaussian
curves which cover a grid over four-dimensional parameter
space, and the data with an injected binary signal

larger section of our four-dimensional parameter space
would have to be used to create an extensive set of
potential double Gaussian curves. Proper tests must be
performed to establish the computational budget of this
process.
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