Inferring the binary black hole redshift distribution
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Abstract
In the past years LIGO-VIRGO have detected five binary black hole mergers; in the universe,
there are one hundred thousand binary black hole mergers a year which creates motivation to
investigate populations of black holes. New searches are currently being designed to detect the
signature of the gravitational wave background of all the distant binary black hole mergers in the
universe. This paper will describe the process of how statistical inference can be used to describe the
astrophysical parameters of this background. The focus will be in inferring the redshift distribution

of the population of black holes which has implications in star formation and primordial black holes.



I. INTRODUCTION

A. 100,000 BBH mergers every year

Black hole binaries, along with other dense bodied binaries, are responsible for the grav-
itational waves that have been detected by LIGO and Virgo. Since 2015, the year in which
the first gravitational wave (GW) was detected, there have been four additionally confirmed
gravitational waves from binary black hole (BBH) mergers and one from a binary neutron
star (BNS) merger [9]. The current operational interferometers are only able to observe the
closest and loudest sources that exist in the local universe, the five BBH mergers were all
approximated to be at a redshift on the order of 107! [1, 2, 6-8]. Now that gravitational

waves can be detected and analyzed, this is only the beginning for GW science.

B. Black hole populations

To date, the current BBH merger rate is one merger every 200 seconds corresponding to
approximately 150,000 mergers every year [4]. Discussion on this amount of binaries should
lead to discussion about black hole populations. Black holes are known to be formed from
massive star collapse however, in the early universe primordial black holes may have been
formed in regions of highly dense gases. LIGO-Virgo have data on five confirmed BBH
mergers meaning there is GW information on the local merger rate but none for any redshift

greater than z = 0.3, where information about primordial black holes may exist [12].

FIG. 1 shows an estimate as to what the distribution of star formation might look like as
a function of redshift [11]. This distribution is based on mass densities at different redshifts
observed using far-UV and far-infrared wavelengths. If black holes are solely formed from
star collapse then it can be assumed that a black hole redshift distribution might follow the
star formation redshift distribution [14]. However, if primordial black holes were formed
then at redshifts greater than 3, the BH redshift distribution might deviate from the star

formation redshift distribution.
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FIG. 1. Madau and Dickinson (2014)

C. BBH gravitational wave background

Once current and future GW detectors reach a sensitivity at which signals can be detected
from BBH mergers every 200 seconds, real data can be used to analyze BH populations [3].
Most of the GWs produced from these mergers will be very quiet and contribute to a GW
stochastic background. In order to analyze BH populations, loud signals like GW150914
must be considered equally to the quiet signals part of the GW background. Rory Smith
and Eric Thrane have devised a new Bayesian search that helps in studying this background
[12].

It takes one year’s worth of LIGO data and divides it into four-second segments that
may be long enough to contain a BBH signal but no evident BNS signal. Each segment is
analyzed to determine if there is a signal present or not. FIG. 2 shows how if 5% of the
data contains a signal, the search can predict that 5% of the data does contain a signal.
Since this is searching through the quiet GW background it is not expected to know which
segments contain a signal but rather estimate what percentage of the data does contain a

signal.
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FIG. 2. Smith and Thrane (2018)
II. MODEL

A. Working with simulated data

This project attempts to use this Bayesian framework to analyze the data that does
have a signal to infer the properties of the background. Analyzing the background leads
questions about whether single event redshift distributions can be used to describe the
redshift distribution for the whole black hole population. To attempt this, a model must first
be designed to describe the redshift distribution of these black holes. As FIG. 3 describes,
this model will be used to generate signals that will in the end follow the model that was

created.

B. Broken power law model

The signals will be generated and described by 15 parameters, each of which is extracted
from corresponding distributions. Masses for these binaries follow a uniform distribution

constrained by LIGO-Virgo’s ability to observe the gravitational wave. The masses range
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‘ generate injections using broken power law distribution ‘
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FIG. 3. Pipeline

from 13 to 45 solar masses, the signals produced from binaries of these masses have a duration
of less than four seconds at frequencies accessible to LIGO-Virgo’s design sensitivity [5]. A
model is constructed to describe the distribution for the luminosity distance that is based
on the Dickinson-Madau star formation redshift distribution seen in FIG. 1. As a simplified
version of the Dickinson-Madau distribution, the luminosity distance probability distribution

is described as

P(D1) = f(D); (1)

where f(Dy) is the broken power law

f(DL) = ) (2)

and N is the normalization factor, which is introduced to ensure the probability is normalized

to 1

(a+1) (B+1)
N=1 (pr-Dmn ), 1 (Doer pr) (3)
a+1 (DT)> |~ B+1 \ (DT)8
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FIG. 4. Produced using TUPAK (Ashton, et al. 2018)

The distribution has cutoffs at D,,;, = 100 Mpc and D,,,., = 5000 Mpc. The values of «
and 3 are chosen to be 1 and -0.5 respectively, with the turnover value at DT = 2000 Mpc.
FIG. 4 shows 500 generated luminosity distances that follow the broken power law model,
shown in orange, with the above given values for a, 8 and DT. 500 signals correspond to

about two months” worth of data if LIGO-Virgo observe a BBH merger every 200 seconds.

C. Parameter Estimation

This project will use the Bayesian framework, discussed previously, to help in estimating
parameters at each stage. To first determine the accuracy of this project the most ideal
case will be carried out in which only the four-second segments that contain a signal will
be gathered. For each segment all fifteen parameters will be estimated. With real data,
analyzing the parameters for each event can help in inferring the type of binaries that exist
in different regions of the universe.

As FIG. 5 depicts, these parameters are described by distributions. Each parameter
of this binary is estimated to be within a range of values. If these were instead exact

values, this project would not be necessary. For example, if in the universe there only
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FIG. 5. Produced using TUPAK (Ashton, et al. 2018)

existed a population of 10,000 binaries that all produced a perfectly observable signal, then
the parameters for each would be known. Each value, say for mass, could be added to a
histogram and that would be a perfect description for the mass population for black holes
as the 10,000 binaries would be known explicitly.

However, this is not something that can be done using the distributions for the parame-
ters, so the question is how to combine the individual distributions for all events to describe
the population of black holes. After the signals are generated then each will be analyzed
using The User friendly Parameter estimAtion Kode (TUPAK), to estimate the marginal
distribution for each generated signal [10]. TUPAK uses Bayes theorem to inform about the
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parameters,

P(0]d) oc £(d]0)T1(0) (4)

where P(6|d) is the posterior probability distribution function (PDF), § are the parameters of
interest and d is the data presented. L£(d| ) ) represents the likelihood of the data containing a
signal, given a specific set of parameters, which can be better described in Talbot and Thrane
(2018) [13]. The prior distribution for this project encodes the astrophysical information
of these binaries, as it is the broken power law model detailed in II1B, that the injected

luminosity distances will follow.

III. RESULTS
A. Hyper PE (preliminary results)

For each of the N events, 500 injections, several sets of parameters were estimated to
produce this signal, then as the pipeline for FIG. 3 shows, once the probability distribu-
tion function is computed for each signal, then all the distributions for each parameter are
combined. This is done using hyper-parameter estimation, where the hyper parameters, A,
are derived from the prior distribution, which are «, 3, and D? from the broken power law
model. TUPAK computes the estimation of these hyper parameters to produce a corner
plot that gives their marginal distribution. The likelihood used in this hyper-parameter

estimation is given in Talbot and Thrane as well,

SN T
£idia) H Z (6] TUPAK) ®)

the denominator is the prior PDF for a single event and the numerator represents the

probability of a binary having 0 in the broken power law model.

Below, FIG. 6 depicts the estimated values for o, 5, and DT. TUPAK is expected to
estimate these hyper parameters so that their real values are within the 90% credible region,
with the best estimation being the distributions peak near the true values. As the figure

shows, this is not the case just yet.
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FIG. 6. Produced using TUPAK (Ashton, et al. 2018)

IV. SUMMARY

Although the desired results were not attained, a pipeline, FIG. 3, gives the steps for
generating a population of binaries following a specific model, estimating the parameters
from the generated signals, and performing hyper-parameter estimation to inform about the
population redshift. Once TUPAK can estimate the hyper-parameters with better certainty
this work can be extend to analyze two months of simulated data, including segments that
contain pure Gaussian noise, rather than only choosing segments containing a signal. A

higher injection count would also help in the bias that currently occurs. In the future when



detectors reach the necessary sensitivity, this framework and pipeline can be used to answer

astrophysically motivated questions about the black holes that exist in the local universe

and black holes that exist far and away.
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