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I. INTRODUCTION

In 1915 Albert Einstein put forward his theory of
general relativity; a theory meshing together space
and time into an entity called space-time. Einstein
predicted the existence of gravitational waves:
ripples in space-time that stretch and squeeze
space as these waves pass through it. Gravitational
waves can be caused by merging binaries, such
as two black holes colliding. In 2015 this binary
collision is exactly what the gravitational wave
community detected: confirming Einsteins theory
of general relativity. Einstein, however, did not
believe that scientists would be able to detect these
gravitational waves because the fractional change
in distance that they cause would be incredibly
small. Modern marvels in physics are the adapted
Michaelson-Morley interferometers used to detect
these gravitational waves.

Fig. 1: Diagram of the basic Michaelson Interfer-
ometer

They include two arms perpendicular to each other
which stretch and squeeze as gravitational waves
pass through them. Currently, LIGO (Laser In-
terferometer Gravitational-Wave Observatory) has
two interferometers, both equipped with 4km arms,
and are stationed in the United States. VIRGO

is equipped with 3km arms and is stationed in
Italy. With these grand interferometers, scientists
are able to detect fractional changes in lengths of
about 10�21, which is about a thousandth the size
of a proton

II. MOTIVATION

Interferometers are searching for disturbances in
the interference pattern caused by the interfering
light rays coming from the two arms solely caused
by gravitational waves. However, there are other
disturbances that can cause interference patterns
and may disturb the interferometer in such a way
as to make the gravitational waves undetectable.
These are known as noise sources and can be
caused by a variety of physical sources. Knowing
how these sources affect the interferometers in
the frequency range is important in order to dis-
tinguish gravitational waves from the total signal
which includes noise. The Modular and Adaptable
Gravitational-wave Interferometer noise Calculator
(MAGIC) which was developed at the Univer-
sity of Birmingham is a python implementation
of FINESSE (Frequency domain INterfErometer
Simulation SoftwarE). MAGIC is used to calcu-
late noise curves based on the design of aLIGO,
Voyager, or the Einstein Telescope where the user
can change parameters of a chosen interferometer,
such as mirror mass, laser power, etc. and get
a resultant noise curve. With the resultant noise
curve we can calculate how far the detector with
these new parameters can accurately detect grav-
itational waves from a binary system of varying
parameters. By using MAGIC we can then look
for which parameters best suit the interferometer
for detecting a selected set of binaries described by
the individual masses. The aim of this project is to
use MAGIC in order to validate the Voyager and
Einstein Telescope noise curve and predict what
should be the optimal parameters of the Voyager
update to aLIGO.



III. QUANTUM NOISE

Part of our research was understanding how chang-
ing the parameters of a detector in MAGIC
changed the total noise of the detector. The most
dominant noise in the high frequency range is
quantum noise, also known as shot noise in the
high frequency regime. It is also very limiting in
the low frequency where it is referred to as radi-
ation pressure noise. To understand this noise we
must delve into quantum mechanics. The following
derivation of quantum noise for a simple mirror
system was worked out originally by our advisor
Dr. Hiaxing Miao [1].

A. THE ELECTRIC FIELD

We may describe the electric field operator as:
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Where â†! and â! represent the creation and anni-
hilation operators, A being the cross-sectional area
of the laser and u(x, y, z) is a function dependent
on the area such that the integral of u(x, y, z)2

divided by A is equal to one. We can then take
combinations of â†! and â! to represent two pho-
tons being created and destroyed in the lower and
upper sidebands,
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We can then take combinations of these operators
to create more meaningful ones, namely:
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Now we may rewrite the electric field operator in
terms of these new combinations. The electric field
is then represented as:
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Here â1 and â2 represent the amplitude and phase
operators respectively.

B. CAVITIES AND MIRROR SURFACES

Fig. 2: Electric field: free propagation and re-
flectance and transmittance

Now that we have defined the electric field in
such a way, we may look at a system such as a
cavity where light is propagating in free space or
where light is being reflected and transmitted, and
describe the final electric field in terms of the input
one(s) such as the figure above. It turns out that
the behavior of these systems looks a lot like the
classical approach. Namely
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where ⌧ = L/c, and
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Here, T and R are the transmissivity and reflectiv-
ity.

C. APPLICATION TO A MOVING MIRROR AND
QUANTUM NOISE

Fig. 3: Diagram of the propagation of the electric
field through free space and its reflection off of a
moving mirror

We are now ready to apply our knowledge of
electric fields to a setup involving free space
propagation as well as some small propagation
caused by a small displacement of the mirror by



an incoming gravitational wave (3). The incoming
beam can be written as
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where
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corresponds to the macroscopic laser
power, whcih gives the electric field its macro-
scopic amplitude. The reflected beam which travels
a distance 2L/c (twice the cavity length) and 2x̂/c
(twice the mirror displacement) can be written as

Ê(t)out = Êin(t� 2⌧ � 2x̂/c), (11)

where ⌧ = L/c. We can assume that the length of
the cavity is an integer multiple of the product !0L

c ,
which gets rid of the term involving L inside the
sin and cos. Also, due to the fact that the displace-
ment of the mirror is small, we may approximate
the equation above and arrive at
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b̂1(t) = â1(t� 2⌧), (13)
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Here, b̂1 and b̂2 correspond to the output amplitude
and phase operators in terms of â1 and â2: the
input amplitude and phase operators. We must now
solve for the displacement of the mirror x̂. We may
do so by solving the equation of motion for the
mirror which involves the radiation pressure force
as well as the acceleration of the mirror caused by
the gravitational wave strain,
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We can solve these equations by doing a Fourier
transform into the frequency domain. Here the
output amplitude and phase operators are
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We can see from this equation that the gravita-
tional wave signal is contained in the output phase
operator. We can now represent this output phase
operator in terms of its expectation value and its
uncertainty, in other words, in its signal and noise:
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This is the transfer function which transforms the
gravitational wave strain into the output phase
operator. With this transfer function it can be
shown that the noise can be written as
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This first term in the equation corresponds to the
shot noise, which is caused by fluctuations of the
input phase operator. In terms of the photons, the
shot noise arises due to the fact that the photons
are coming in at random times, and there is an
uncertainty in the number of photons arriving. The
second term corresponds to the input amplitude
operator and its uncertainty. Since the photons
arrive randomly, the pressure will vary randomly as
well, this is the radiation pressure noise. The shot
noise and radiation pressure noise power spectrum
can be summed up as
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In equation 22, the first term is the shot noise and
the second term is the radiation pressure noise. It
is clear that the shot noise depends inversely with
the laser power, and the radiation pressure is pro-
portional to the laser power. This simple example
of quantum noise and the relationship with power
can be generalized to more complicated systems,
including the Michaelson-Morly interferometer of
aLIGO, Voyager and even the Einstein Telescope
models. This analysis helps us build an intuition
on how quantum noise depends on laser power,
which is a key component in any interferometer.

IV. MAGIC

A. PURPOSE OF MAGIC

MAGIC is a python implementation of the pro-
gram FINESSE created by Isobel Romero-Shaw
and Roshni Vincent [3], [4]. This program is
used to model complicated interferometers as to
analyze many import aspects of the system such
as laser power at a point or the displacement
of a mirror due to radiation pressure. MAGIC
is primarily used to plot noise curves for any
given interferometer. In MAGIC, there are pre-
loaded interferometer schematics corresponding to
aLIGO, Voyager, Einstein Telescope, and Cosmic
Explorer. These schematics are python implemen-
tations of the same schematics on FINESSE. With
this python implementation however, there is a
much more user friendly way to change the pa-
rameters of any chosen interferometer including
laser power, mirror transmittances, cavity lengths,
etc.

The user can change the parameters as they see fit
and see how the noise changes. This includes, the
individual noises such as quantum noise, thermal
noise, Newtonian noise, etc. Our project involved
working on certain applications of MAGIC, and

attempting to justify it as an accurate noise calcu-
lator.

B. APPLICATIONS: aLIGO VALIDATION

Fig. 4: aLIGO Noise Curve.

Advanced LIGO is an established interferometer
based in the United States which has successfully
detected a variety of gravitational waves, included
those from binary black holes and binary neutron
star mergers. We plotted the aLIGO curve pro-
duced by MAGIC with the noise curve provided
through LIGO and were pleased to find that there
was a great similarity between the curves.

Fig. 5: aLIGO Validation.

The only discrepancy seems to lie in the low
frequency range where we believe that there is
a resonance in the mirror suspensions that are
accounted for in the LIGO data, but not in the
MAGIC implementation.



C. VOYAGER VALIDATION

The Voyager update to advanced LIGO is said to
be the final upgrade before implementing the next
generation of gravitational wave detectors. Voyager
is said to involve cryogenic cooling to its mirrors,
as well as a larger mirror mass, and a silica coating.
Indeed in MAGIC these parameters are specified
in the code explicitly, along with other parameters
shared with aLIGO such as arm length. We plotted
the noise curve of Voyager using MAGIC and
compared this curve to data acquired from LIGO
(figure below).

Fig. 6: Voyager validation.

D. EINSTEIN TELESCOPE VALIDATION

The Einstein Telescope is said to be part of the next
generation of advanced interferometers. It consists
of three 10 km arms at 60 degrees apart, totaling
three interferometers in this configuration. This
allows for the two polarizations of the gravitational
wave that are 45 degrees to each other to be
detected.

Another reason is that it allows scientists to use
two different laser powers: one at low power to in-
vestigate the low frequency regime where radiation
pressure noise dominates, and one at high power
to investigate the high frequency regime where
shot noise dominates. This combination results to
an overall lower noise curve compared to aLIGO
and Voyager. However, in our investigation of the
Einstein Telescope noise curve created by MAGIC,
we were not able to resolve the issue of the noise
curve being significantly higher than the noise
curve acquired through LIGO.

Fig. 7: Einstein telescope configuration.

Fig. 8: Einstein Telescope validation

V. OPTIMIZATION THROUGH
DIFFERENTIAL EVOLUTION

One of the main purposes of MAGIC is being
able to change the parameters of an interferometric
system and produce the corresponding noise curve.
With any configuration such as Voyager, we are
able to change the parameters to look for a better
noise curve, where the definition of a better noise
curve lies in the signal to noise ratio of the
gravitational wave strain and the noise curve. This
signal to noise ration also corresponds to how far
the interferometer can detect the corresponding
binary. This signal to noise ratio depends on not
only the noise curve, but also the gravitational
wave strain, which depends on what kind of binary
system is producing the strain. In our investigations
of optimizing Voyager and Einstein Telescope,
we look at strains produced by phenomenological



models [2] of a 25 solar mass binary (representing
a black hole binary) and a 1.4 solar mass binary
(representing a neutron star binary). It would be
tedious to manually change the parameters of the
noise curve and look for the best distance the
interferometer can detect. Instead, there is a script
implemented in MAGIC which takes advantage
of the function differential evolution, which goes
through iterations of parameter space (choosing
mirror mass, suspension length, laser power,etc.),
getting distances, then chooses the next iteration on
whether the previous iteration produced a better or
worse distance. The function looks through param-
eter space, looking to maximize the distance than
the previous one. This is an improved method of
searching for optimal parameters, because the code
chooses the next parameters based on information
provided by the previous set of parameters. We
use this method to optimize Voyager and Einstein
Telescope.

A. VOYAGER OPTIMIZATION

Below are the graphs of the optimizations of
Voyager for a 25 solar mass binary system as well
as for a 1.4 solar mass binary system.

Fig. 9: Optimized noise curve of Voyager for a
dual 25 solar mass binary system

Fig. 10: Optimized noise curve of Voyager for a
dual 1.4 solar mass binary system

Each optimization produces a lower noise curve
than the original MAGIC Voyager noise curve.
The parameters for each Voyager optimization are
listed below

Fig. 11: List of parameters for Optimized Voyager
noise curves for 25 SM and 1.4 SM binary sys-
tems. Where suspension length and mirror mass
listed correspond to the final mirror in the python
arrays of these variables.

B. EINSTEIN TELESCOPE OPTIMIZATION

The graphs of the optimizations for the Einstein
Telescope for a 25 solar mass binary system and
for a 1.4 solar mass binary system



Fig. 12: Optimized noise curve of ET for a dual
25 solar mass binary system

Fig. 13: Optimized noise curve of ET for a dual
1.4 solar mass binary system

The optimized curves for Einstein Telescope are
lower than the noise curve of the Einstein Tele-
scope produced by its original set of parameters.
A table showing these parameters compared to the
optimized parameters are shown below.

Fig. 14: List of parameters for Optimized ET noise
curves for 25 sM and 1.4 SM binary systems.
Where suspension length and mirror mass listed
correspond to the final mirror in the python arrays
of these variables.

VI. CONCLUSION

We have derived for ourselves the quantum noise
for a simple system, whose results are found in [1].
This let us build an intuition on how laser power
affects the quantum noise, which is one of the
most important limiting factor at low frequencies,
and the most dominant in high frequencies. We
then used MAGIC to validate aLIGO, Voyager
and partially the Einstein Telescope. Although,
some more work needs to be done to resolve the
discrepancy between the MAGIC implementation
and the LIGO implementation of the Einstein
Telescope noise curve. A final implementation of
MAGIC was an attempt to optimize Voyager and
Einstein Telescope specifically for dual binaries of
25 and 1.4 solar masses. This code is an important
and powerful tool to deduce the efficiency of
interferometers, and will hopefully in the future
influence a discussion on a do-it-all interferometer
noise calculator.
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