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Abstract

In this paper we present the first steps of a project to develop a model that can take

seismic measurements from the gravitational wave detector sites, predict the seismic field

around the test mass, and calculate the seismic Newtonian noise. We developed several

models that simulate seismic fields and can calculate the seismic Newtonian noise from

them, as well as an initial Gaussian Process regression model that is trained on data

from our one-dimensional model. The models built are capable of simulating seismic

fields with varying degrees of complexity, with one model close to simulating actual

environments. The first results of the Gaussian Process regression model were accurate

and provide motivation for improvement. The models completed thus far are a positive

first step in the completion of this project.

1 Introduction

In 1915 Albert Einstein published his Theory of General Relativity, which

predicts the existence of gravitational waves. These waves are produced by

the acceleration of massive objects, propagate at the speed of light, and

stretch and compress the fabric of spacetime in orthogonal directions. The
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current method for detecting gravitational waves is the utilization of an ad-

vanced, massive Michelson interferometer, as used by LIGO, Virgo, and other

observatories. Past detections have shown that the strength of gravitational

wave signals once they reach Earth is remarkably weak, with the first detec-

tion GW150914 having a strain of 10�21. This presents a major challenge

in successfully detecting gravitational waves, as there are numerous sources

of noise in the detectors that can cause the signal to become undetectable.

Shown below is the Advanced Virgo sensitivity curve.

Figure 1: This is the Advanced Virgo Sensitivity curve and shows the
strength of each source of noise in an equivalent gravitational wave ampli-
tude.

As shown in this graph, the strength of the noise signals increase at lower
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frequencies, making gravitational waves with signals below approximately

10Hz quite di�cult to detect. The noise source that this paper is concerned

with is the gravity gradient noise, or Newtonain noise. Newtonain noise

results from the acceleration of the test mass due to fluctuations in the grav-

itational field surrounding it. At low frequencies, Newtonain noise becomes

one of the dominant sources of noise and must be mitigated if we hope to de-

tect gravitational wave signals at low frequencies. There are many sources of

Newtonian noise, however they can be divided into three categories: seismic,

atmospheric, anthropogenic [1]. In this paper, we explore the seismic contri-

butions to Newtonian noise. The goal of this project is to develop a model

that takes a small amount of seismic measurements from the field surround-

ing the test mass and predicts the entire field, then calculates the Newtonian

noise from that field. In the following sections, we will present various models

to calculate the Newtonain noise from seismic fields and present a Gaussian

Process Regression model to make predictions of the Newtonian noise.

2 Background

2.1 Seismic Waves

The source of seismic Newtonian noise is seismic waves passing through the

medium surrounding the test mass. The three types of seismic waves are

shear waves or S-waves, compressional waves or P-waves, and surface waves.

Shear waves are transverse waves and displace the medium perpindicular to

its direction of propagation thus they have two polarizations, the horizontal
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polarization is parallel to the surface and the vertical polarization is per-

pindicular to the surface. Compressional waves are longitudinal waves and

compress and expand the medium in the direction of propagtion. The main

type of surface wave is the Rayleigh wave, which both compresses and ex-

pands the medium and displaces the medium perpindicular to the surface.

Rayleigh waves can decomposed into P-wave and vertically polarized S-wave

components. Figure 2 below provides a representation of each type of wave,

including love waves which we are not concerned with in our study of seismic

Newtonian noise.

Figure 2: Representatin of P-waves, S-waves, Rayleigh waves, and Love
waves.

The amplitude of Rayleigh waves is significantly larger than the other

waves[1] and thus will be our focus. We define k% to be the horizontal

wavenumber, kP is the wavenumber of the P-wave contribution, and kS is

the wavenumber of the S-wave. Similarly, we define ~k% be the horizontal
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wave vector and ~kz be the vertical wave vector. The vertical and horizontal

amplitudes of the Rayleigh wave are given by:

⇠k(~r, t) = A · (k%eq
P
z z � ⇣qSz e

qSz z) · sin(~k% · ~%� !t)

⇠z(~r, t) = A · (qPz eq
P
z z � ⇣k%e

qSz z) · cos(~k% · ~%� !t)
(1)

Where the variables qPz , q
S
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qPz
qSz

(2)

The displacement of Rayleigh waves, although surface waves, do extend

evanescently through the medium. Using the wave paramters above, the

di↵erence between the exponentials in equation 1 describes how exactly this

occurs. Defining CR be the speed of the Rayleigh and CS to be speed of

S-wave component, the ratio
C2
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S
obeys the equations:
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The variable ⌫ is Poisson’s ratio is a property of the medium. Finally,

the seismic displacement vector is given by:

⇠(~r, t) = ⇠k(~r, t)~ek + ⇠z(~r, t)~ez (4)

The vector ~ek is the unit vector in the direction of the Horizontal wave

vector which is also the direction of propagation of the wave and the vector
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~ez is the unit vector in the direction of the z-axis. A detailed derivation of

the equations above can be found in Jan Harm’s paper ”Terrestrial Gravity

Fluctuations” [?]. Using these equations we are able to determine the seismic

displacement field and how it changes with time and position.

2.2 Seismic Newtonian Noise

As seimic waves pass through the medium around the test mass, they cause

density fluctuations in the medium and produces the seismic Newtonian

noise. In our model, we consider a Rayleigh wave passing through a ho-

mogenous half-medium, as shown in the figure below.

Figure 3: This figure, taken from Beker’s paper ”Low-frequency sensitivity
of next generation gravitational wave detectors” [2], show the homogeneous
half-medium and coordinate system used in our model.

The total seismic Newtonian noise is due to the density fluctuations

caused by the Rayleigh wave in the medium and at the boundary. The

contributions of each are given by:

6



�~aNN,Med(~y, t) = G⇢0

Z

V
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Z

S
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S
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(5)

Where the vector ~k is defined as:

~k =
~r0

|~r0|3 (6)

Taking the sum of these contributions gives the total seismic Newtonian

noise:

�~aNN(~y, t) = G⇢0

Z

V

(~⇠(~r, t) ·r)~kdV (7)

A formal derivation of these equations can be found in Beker’s paper

”Low-frequency sensitity of next generation gravitational wave detectors” [2].

In this paper, Beker also derives an equation for the total seismic Newtonian

noise for numerical analysis from the equation above, given by:

�~aNN(~y, t) = G⇢0
X

iN
1

|~ri0|3
(~⇠ � 3(~⇠ · r̂i0)r̂i0 · Vi (8)

With r̂i
0 defined as the unit vector that points from the test mass to the

ith volume element. Using this equation, along with equations 4 and 1 a

finite element model to calculate the seismic Newtonian noise can be built.
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2.3 Gaussian Processes

Guassian Processes are powerful tools, particularly in regression modeling.

One way to think of a Gaussian Process regression model is as distribution

of functions. Suppose we have a collection of observations (y1, y2, ..., yn) that

follow a normal distribution at locations (x1, x2, ..., xn) in some parameter

space, where y = f(x). We define a covariance matrix ⌃, this must take a

specific form however we will not provide detail regarding that, for (xi, xj)

for every pair of parameters where an observation was made and a mean

function µ. These form a Gaussian process prior, from which we make pre-

dictions and form a posterior distribution. This posterior distribution, rather

than providing one fit it produces many functions to fit the data, so the pos-

terior distribution is as mentioned before a distribution of functions. The

significance of the Gaussian Process regression model is it produces many

functions and provides information for how good the mean function it out-

puts is. Shown below is an example of a Gaussian Process regression model.

Figure 4: The prior, posterior, and posterior with uncertainty of a Gaussian
Process regression model.
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3 Results

3.1 Single Wave Models

The single wave models were the simplest implementations of equations 1, 4,

and 8. We built an one-dimensional, two-dimensional, and three-dimensional

model1 in which the seismic field is produced by a Rayleigh wave with known

parameters. The wave parameters defined in equation 2 are determined by

knowing the speed of the Rayleigh wave, the P-wave component, and the S-

wave component and the direction of propagation. A method for determining

the speed of the various components is presented in Beker’s paper. First, we

determined the speed of the P-wave component using the equation:

⇢ = ↵C�
P (9)

Where ⇢ is the density of the medium and ↵ and � are parameters. They

suggest setting ↵ = 0.31 and � = 0.25 for accurate predictions for the range

of density values used for Virgo, which we did. Next, we used the P-wave

speed, CP to determine the speed of the S-wave component using the followin

relationship:

CS

CP
=

r
1� 2⌫

2� 2⌫
(10)

We then used CS and equation 3 to determine the speed of the Rayleigh

wave , CR. Once these speeds were determined and a direction of propaga-

1We built all models in Python using the Python packages Numpy, Matplotlib, and
Itertools.
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tion was chosen, the remaining parameters could be calculated. The main

parameters of our model that we changed were ↵, �, ⌫, and ⇢ as all other

parameters are determined by knowing these values. Using these parameters

we defined the seismic displacements using equation 1, where our inputs were

the x, y, and z positions, the time, frequency, angle of propagation relative to

the x-axis, and we added a phase shift. Lastly, we also defined two equations

using equation 8. The first was to calculate the contribution of a single point

in the field at a given time and the second was to calculate the total seismic

Newtonian noise due to the entire field at a given point in time. The di↵er-

ences between the di↵erent dimensional models are minimal, for example the

one-dimensional did not include a direction of propagation as the wave was

set to travel along the x-axis, so the propagation angle was left out. Below

are results obtained from these models.

Figure 5: The horizontal and vertical seismic displacements for a Rayleigh
wave with a speed of 350m/s and a frequency of 2Hz from the one-dimensional
model.
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Figure 6: The horizontal and vertical seismic displacements for a Rayleigh
wave with a speed of 1136m/s, an angle of propagation of 45 � , and a
frequency of 2Hz from the one-dimensional model.

Figure 7: This is the time series of the seismic Newtonian noise produced
by a Rayleigh wave with a speed of 1136m/s, an angle of propagation of
45 �, and a frequency of 2Hz from the three-dimensional model. This was
calculated using a grid of 500m ⇥500m grid centered on the test mass, with
a depth of 100m. The points in the grid were equally spaced with dimensions
101⇥101⇥11.

3.2 Multi Wave Models

The multi-wave models we developed are extensions of the models discussed

in the previous section. We decided to build a two-dimensional and three
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dimensional multi-wave model. We defined the parameters in these models

exactly the same as we did in the single-wave models. The main di↵erence

in moving to these models is that the seismic field is now the superposition

of five Rayleigh waves with frequencies 2Hz, 4Hz, 6Hz, 8Hz, and 10Hz. We

also included a frequency dependent amplitude for amplitude of the displace-

ments for each wave. To determine the function for this frequency dependent

amplitude we began with the Rayleigh wave spectral density graph shown

below:

Figure 8: The amplitude spectral density graph for Rayleigh waves [2]

We used a simple approach of estimating a line that passes through the
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points (2, 4 10�8) and (10, 5 10�8). From this, we were able to find determine

the equation to be:

A(f) =
4 · 10�8

2�2.72
· f�2.72 (11)

We then rescaled it so that A(2) = 1, giving us:

A(f) =
1

2�2.72
· f�2.72 (12)

We assigned to each frequency a phase shiift and angle of propagation

as well to make interpretting the results more straightforward. However, we

did include equations where the phase shift and direction of propagation for

each wave were normal distributed random variables. Below are some results

obtained from this model.

Figure 9: The horizontal and vertical seismic displacements for a superpo-
sition of Rayleigh waves with a speed of 1136m/s from the two-dimensional
model.
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Figure 10: This is the time series of the seismic Newtonian noise from the
superposition of the five Rayleigh waves with a speed of 1136m/s. The grid
used for the calculation was a 500m⇥500m centered on the test mass and the
points calculated at were equally spaced through this grid with dimensions
31⇥31⇥7.

3.3 Gaussian Process Regression

For the Gaussian Process regression model, we used the one-dimension model

from section 3.1 and added the frequency dependent amplitude to it. Our

approach for the Gaussian Process regression model was to use as few seismic

displacement observations as possible such that we could accurately predict

the remaineder of the field surrounding the test mass and calculate the seis-

mic Newtonian noise. We built two Gaussian Process regression model, one

to make predictions for the horizontal seismic displacements and to make
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predictions for the vertical seismic displacements. For our model2, we used

the Pymc3 Marginal likelihood implementation for regression. With this, we

used the default mean function which is the zero mean and for the covari-

ance function we used the exponentiated quadratic. We added a miniscule

amount of noise following a normal distribution as a prior to increase numer-

ical stability. The other prior added was for the length scale of the covariance

function, which we defined as to be drawn from a normal distribution with

mean 120 and standard deviation 20. Shown below are a few predictions

made by the model.

Figure 11: This is the prediction after training the model for the vertical dis-
placements on 4 points equally spaced between 0m and 500m for a Rayleigh
wave with a speed of 1136m/s and a frequency of 2Hz, along with a graph
showing the di↵erence between the mean function and the actual values.

2We built our model using the Numpy, Matplotlib, itertools, and Pymc3 packages in
Python, leaning heavily on the Gaussian Process tools in the Pymc3 package.
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Figure 12: This is the prediction after training the model for the vertical dis-
placements on 6 points equally spaced between 0m and 500m for a Rayleigh
wave with a speed of 1136m/s and a frequency of 2Hz, along with a graph
showing the di↵erence between the mean function and the actual values.

Figure 13: This is the prediction after training the model for the vertical dis-
placements on 7 points equally spaced between 0m and 500m for a Rayleigh
wave with a speed of 1136m/s and a frequency of 2Hz, along with a graph
showing the di↵erence between the mean function and the actual values .

From these outputs we can see that training the model on just seven

observations results in a mean function that is very close to the actual data,

the model trained on six observations does quite well too, however once we

get down to training the model on four observations the mean function is

clearly wrong. This pattern of results held for the horizontal model as well.

We proceeded to use the models to make predictions for an entire times
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series, training the models on seven points for each time step and used these

predictions to produce a prediction of the time series of the seismic Newtonian

noise. The results are shown below.

Figure 14: This shows the comparison between the time series for seismic
Newtonian noise as predicted by the Gaussian Process regression model and
the actual time series of the seismic Newtonian noise.

This result is was better than expected for this initial model. The model

performing well after being trained on only seven observations is significant,

since the Virgo detector currently uses an array of seven seismometers to
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measure the seismic field at the site [2].

4 Conclusion

Overall, this project was successful in developing increasingly complex mod-

els to calculate the seismic Newtonian noise from seismic fields. The three-

dimensional multi-wave model as discussed in section 3.2 can quite easily

be made to calculate the superposition of a large number waves with vary-

ing parameters, thus making it possible to simulate quite complex seismic

fields. The initial Gaussian Process regression model also had promising re-

sults. Although it was for the simplest case, having the model make quite

accurate predictions after being trained on a number of observations close to

the number of seismometers each observation site has demonstrates that this

model adequate enough to motivate improvement. Future work will include

improvements to the models discussed in sections 3.1 and 3.2 and to begin

building Gaussian Process regression models that is able be trained on data

from other the models developed and go towards being able to make accurate

predictions for seismic Newtonian noise from predicting increasingly complex

seismic fields. This results presented in this paper are a valuable first step in

achieving a more developed model.
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