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Chapter 1

Introduction

1.1 Future Astronomy
As physicists continues to probe further back into the history of the uni-

verse and deeper into the mechanisms of stellar events, there also grows
a demand for more observational data. Thus far, the fields of astronomy
and observational astrophysics have been dominated primarily by work fo-
cusing on physics deductible from observations of the electromagnetic spec-
trum. However, there are many instances in which these methods simply fail
to shed light on phenomenon of interest. Some such examples include the
physics within the core of an exploding star, the evolution of black holes,
as well as the mechanics of certain binary stellar systems and their mergers.
Fortunately, there are other means of deducing physics concerning these and
other cosmic events for which traditional methods fall short.

The detection of gravitational waves would not only provide one of the
final verifications of Einstein’s theory of general relativity, but also a new
observational resource for astronomy capable of probing phenomenon previ-
ously inaccessible by electromagnetic observations. Gravitational waves are
propagating perturbations in spacetime generated by quadrapole moments
in matter. These are normally simply accelerating asymmetric masses in-
cluding such things as orbiting binaries or spinning bodies with significant
mountains and valleys. The larger the acceleration or the asymmetry, the
more significant the perturbation. For these reasons binary black hole sys-
tems are likely candidates for gravitational wave observation particularly
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while in their rapidly orbiting late stage inspirall, merger, and ring down
phases.

Since gravitational waves are generated by the motion and distribution of
mass, they can encode and carry physically significant data about the evolv-
ing states of their progenitors regardless of their emission of electromagnetic
radiation. Therefore, gravitational waves o�er an alternative method of ob-
serving the cosmos allowing for the possibility of achieving unprecedented
insights into physical processes.

1.2 Data Analysis
In order to develop a new astronomy, a complete data analysis machinery

must be developed and set in place which can deduce physics from obser-
vations. Like observations of electromagnetic radiation, certain information
about the progenitors of the gravitational waves can be inferred from various
properties of the waves themselves. Among the properties to be determined,
the sky location of progenitor events is of central importance. However, a
surprising number of insights might be gained from the analysis of detected
waves.

Briefly, there are two broad classifications of gravitational waves; contin-
uous waves and bursts. The former are generated by events which occur
on long time scales which continuously emit gravitational waves throughout
their evolution. Inspiralling binaries are one such example which can emit
gravitational waves for many years. The latter classification refers to progen-
itor events which occur on a much shorter time scale. These include events
such as supernova which emit gravitational waves with durations on the or-
der of seconds or less. Some events may transition from one type to the other
during their evolution. In the late stage inspirall, merger, and ringdown of
a binary system gravitational waves are produced that are distinct from the
earlier stages of the inspirall. Firstly, the amplitude of the waves greatly
increases during these stages. This means that for binaries with continuous
waves of small amplitude, these late stage events may be all that can be
detected. Lastly, the merger and ringdown occur very quickly and therefore
fall into the domain of burst gravitational waves. It is with these kinds of
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burst waves that the current report is primarily concerned, and more specif-
ically the determination of the sky location of their sources. In Fig. 1.1, an
example waveform of this kind can be seen.

Figure 1.1: This is a plot of a simulated gravitational wave signal generated
by a binary black hole system in which the black holes were of equal mass
and zero spin. As can been seen, the early segment of this wave is very
regular in frequency and amplitude. The time during and before this stage
of the systems evolution are a source of continuous gravitational waves. There
can also been seen a remarkable and rapid increase in both amplitude and
frequency towards the later stages of the systems evolution during which the
binary system merges and rings-down. This region falls under the perview
of burst gravitational wave analysis. For very distant or small systems this
may be the only detectable stage of the entire evolution of the system.
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Chapter 2

Methods

2.1 NR-Simulation Catalogs
Given the complexity and nature of Einstein’s field equations, many sys-

tems are analytically intractable. Therefore, much work has been done to
solve these systems numerically. The development of data analysis tools
is heavily dependent on these simulations provided by numerical relativ-
ity. First, they act as the predictions against which observations must be
compared in order to test theory. Second, during the development of the
techniques and tools of data analysis, they act as test data on which an al-
gorithm and/or code maybe be tested to check for validity. However, these
simulations are di�cult to construct and can be computationally expensive.
Therefore, the available simulations can be limited in variety.

For analysis purposes, the simulated waveforms are usually grouped to-
gether into sets called catalogs. These are matrices each column of which
is a di�erent simulated waveform. All of the waveforms in a catalog usually
share a certain set of fixed parameters while other parameters are varied so
as to created an approximate representative sample of the given set of fixed
parameters. In the analysis reported here, three catalogs were implemented.
The waveforms from each catalog all came from simulations of binary black
hole systems. All of the waveforms in the first catalog, referred to as the
Q-series, came from simulations in which neither of the black holes were
spinning. There were 33 waveforms in the Q-series over which the mass ratio
of the black holes was varied. The 81 waveforms in the second catalog, called
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the HR-series, were generated in simulations in which both black holes were
spinning at the same rate and for which their spin angular momenta were
parallel to the orbital angular momentum of the system. In this catalog, the
mass ratio was again varied as was the magnitude of the spins. Lastly, the
third catalog, referred to as the RO3-series, contained 19 waveforms in which
the spin angular momenta of the black holes were allowed to freely precess
during inspiral. The mass ratio, spin magnitude, and initial angular displace-
ment between the spin angular momenta of the black holes were varied in
each waveform (one spin initially parallel to the orbital angular momentum
and the other initially askew varied angles).

Work has already been done to successfully enable the identification of
unknown waveforms as belonging to one of these catalogs. This e�ectively
allows for the identification of the type of source of the gravitational wave as
well as some of its other parameters. The focus of the work reported here was
to broaden the capabilities of the analysis to include the ability to identify
the sky location of the progenitor allowing for a more complete astronomy
of gravitational waves.

2.2 Principle Component Analysis [1]
The first step of the analysis used here is Principle Component Analysis

(PCA) which implements a matrix decomposition technique from linear al-
gebra called Singular Value Decomposition (SVD) to factor the catalog into
more computationally useful matrices.

Singular Value Decomposition
A(mxn) = U(mxm)�(mxn)V

T

(nxn)
(2.1)

SVD decomposes a matrix A into three factor matrices. The first is often
denoted by U . It’s columns form what are called the left singular vectors
which obey the equation c1A = c1‡1 where c1 is the first column of U and
‡1 is its corresponding singular value. The third matrix is denoted by V

T .
The columns of V form the right singular vectors of A and obey the same
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equations as the the columns of U with the exception that the columns of V

operate on the right of A as indicated by its name. The middle matrix (�)
is a diagonal matrix whose elements correspond to the singular values of the
columns of U and V .

U and V also have other useful properties on which PCA is based. The
columns of U are the eigenvectors of the the covariance matrix of A (AA

T )
and their singular values are the corresponding eigenvalues. Similarly, the
columns of V and their corresponding singular values form the eignevectors
and eigenvalues of A

T
A. Ultimately, this means that we can use either the

columns of U as a basis for the column space of A or the columns of V as a
basis for the row space of A. Since the ultimate goal is to be able to determine
certain physics concerning gravitational waves (which form the columns of
the catalogs) the matrix U and its eigenvalues are of primary interest.

When the matrix A is a waveform catalog, the column-wise normalized
matrix U becomes an orthonormal basis set which spans the column space
of the catalog. Each basis vector (column of U) of the column space of A

encodes a predominant feature shared among the waveforms in the catalog.
In more mathematical terms, the eigenvalue is the scalar resultant of the
projection of its corresponding basis vector onto the catalog and therefore a
measure of its prevalence in the catalog. This means that the basis vectors
may be ordered by their prevalence in the catalog in accordance with their
eigenvalues (from greatest to least). Looking back at Eq. 2.1, there are as
many basis vectors as there are waveforms in the catalog which means that
there is (ideally) no loss of information in the decomposition.

Recall from above that there are as many basis vectors (columns of U) as
there are waveforms in the catalog used in the PCA. This number can often
be rather large for computation purposes. However, it is possible to use fewer
than the total number of basis vectors so long as enough are retained to suf-
ficiently span the space. This can be determined using an eigenvalue energy
method. The eigenvalues of all the basis vectors were collected into a single
vector, ordered from greatest to least, which was then normalized. Then the
values were summed until the total reached some acceptable threshold (.9 in
the analysis reported here). Then only the basis vectors whose eigenvalues
contributed to the sum were used in the rest of the analysis. In this way, a
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much smaller computationally tractable approximate basis was constructed
which still su�ciently spanned the catalogs. The basis vectors used in the
final analysis are called the Principle Components (PCs). As can be seen
in Fig. 2.1, remarkably few PCs (compared to the size of the catalogs) are
required to span each catalog. In the analysis reported here, 2 PCs were
used on the Q-series analysis, 5 for the RO3-series analysis, and 8 for the HR
series.

If the original catalog is large enough, then U can be considered to be the
basis for all waveforms sharing the same parameters as those in the catalog.
As an example, the columns of the normalized U matrix which results from
the application of PCA to the Q-series catalog may be used as an approximate
basis for all waveforms generated by non-spinning binary black hole systems
and not just those simulations used in the Q-series catalog. In this way, this
algorithm gains the ability to e�ectively analyze unsimulated waveforms. The
amazing ability to generalize the available simulations and accurately handle
unsimulated waveforms is part of what makes analysis so powerful.
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Figure 2.1: In this figure, the eigen-energy is plotted as a function of the
number of PCs. Impressively few of the PCs are needed in order to su�ciently
span the catalogs. Only 2 PCs are required for the Q-series, 5 for the RO3-
series, and 8 for the HR series.
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2.3 Bayesian Model Selection and Parameter
Estimation [1] [2]

The second crucial element of analysis reported here is based on Bayesian
Statistics in which Bayes Theorem pays a central role. Bayes Theorem relates
the probability the that a hypothesis is true given the data set {Dk} ( called
the posterior and denoted P (H|{Dk}, I) ) to the probability that the data
would have been observed given that the hypothesis were true ( called the
likelihood and denoted P ({Dk}|H, I) ). This is extremely useful as it is
usually much easier to compute the likelihood than the quantity of primary
interest, the posterior. In Bayes Thm., the posterior is also related to the
probability that the hypothesis is true without support from the data (called
the prior and denoted P (H|I) ) and the probability that the data would
have been observed given no hypothesis (called the evidence and denoted
P ({Dk}|I) ). However, the evidence is often ignored as a scale factor to
be computed during normalization after the fact. Another important note
is that at large samples the likelihood almost always dominates the prior.
However, both quantities can be of essential importance depending on the
problem at hand.

Bayes Theorem
P (H|{Dk}, I) = P ({Dk}|H, I) ◊ P (H|I)

P ({Dk}|I)
(2.2)

Bayes Thm. is primarily used as a parameter estimation tool in which the
resulting posterior is the probability distribution function of some quantity
of interest. In the current analysis the sky locations (right ascension and
declination) of the source were of primary concern. To ensure an unbiased
posterior, a prior is normally chosen which exhibits maximal ignorance. This
often results in the assignment of a flat prior distribution in which each
possibility is given equal weight. In the analysis reported here, flat priors
were implemented for both the right ascension and declination. Although,
it is important to note that a flat prior is not the most unbiased assignment
for the declination as it will favor the poles. Since the likelihood function so
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strongly dominates the analysis, this was not seen as a serious error but will
be revisited and revised in future work (for a full length discussion of the sky
localization analysis, see 2.4).

Since the likelihood is meant to be the probability of measuring the data
given the hypothesis to be true, it is often modeled after the expected noise
of the observed data. For an uncorrelated data set with Gaussian noise, the
likelihood is simply the product over the Gaussian noise on each data point
in the set. The addition of each data point in the set alters the posterior
distribution until it reflects the estimate preferred by the data. The Like-
lihood function used in this analysis is Eq. 2.3. The "model" term in Eq.
2.3 is a reconstruction from the PCs using parameters which are at first ran-
domly chosen but then begin to converge to higher likelihood values using the
Nested Sampling Algorithm described in [2]. For computational purposes,
the logarithm of the likelihood was computed which simply and conveniently
changes the product to a sum.

Likelihood Function
log(L) = ≠2 �F ◊

ÿ

i

(wave(i) ≠ model(i))2

noise(i)
(2.3)

In earlier work, which preceded this report but with which this report is
still concerned, the focus was to determine which among the catalogs an
injected signal most likely belongs thereby determining the most likely type
of source (among other parameters). This can be done by evaluating the ratio
of two posteriors, the first in which the "model" in Eq. 2.3 was generated
by the PCs of one catalog, and the second in which the "model" in Eq. 2.3
was generated using the PCs of a second catalog. By assuming a priori

that the waveform has an equal probability of being from either catalog, the
priors for the posteriors of the two catalogs become equal and cancel out in
the ratio. Furthermore, the evidence in the denominator of each posterior
can be ignored at this stage as a scale factor. This leaves only the ratio of
the likelihoods which is often referred to as the Bayes Factor. Also, in the
literature, the proposition "that the waveform belongs to the first catalog" is

10



referred to as Hypothesis 1 and is usually denoted H1. A similar convention
is adopted for the proposition "that the waveform belongs to the second
catalog". Again, it is common to compute the logarithm of the Bayes Factor
such that a positive BH1H2 in Eq. 2.4 is consistent with a preference in the
data for H1 and a negative BH1H2 with a preference for H2.

Bayes Factor
BH1H2 = P ({Dk}|H1, I)

P ({Dk}|H2, I))
(2.4)

The probability that a waveform belongs to a given catalog i ( P ({Dk}|Hi, I)
) is determined by the fit and coe�cients of the linear combination of the PCs
belonging to that catalog used in the likelihood function. This means that
P ({Dk}|Hi, I) is a multi-parameter probability. Therefore, what is needed is
a method of reducing the multiple posteriors (one for each coe�cient in the
linear combination) into a single posterior for the entire hypothesis. This is
done in two steps. The first is to use Eq. 2.5 known as the Product Rule
which states that the probability, given only that the hypothesis is true, of
observing data {Dk} corresponding to a fixed set of parameters (in this case
coe�cients) {◊i} is equal to the product of the probability that the data
would have been observed, given the parameters and the hypothesis, and the
probability that given that the hypothesis were true given that the set of
parameters.

Product Rule
P ({Dk}, {◊i}|H) = P ({Dk}|{◊i}, H) ◊ P ({◊i}|H)

(2.5)

The second step to computing ( P ({Dk}|Hi) ) is Eq. 2.6 and is called the
Marginalization Rule. It allows for the elimination the dependence on {◊i} in
P ({Dk}, {◊i}|Hi) by summing over all possible values of the elements of {◊i}.
Since the values of the coe�cients vary continuously, the summation becomes
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an integral. The limits of integration are determined by the upper and lower
bounds on the prior for the parameter estimation on the coe�cients.

Marginalization Rule
P ({Dk}|Hi) =

⁄
...

⁄

i

P ({Dk}|{◊i}, Hi) ◊ P ({◊i}|Hi) d{◊i}
(2.6)

By sampling the likelihood and prior, it is ultimately this integral which
is computed by the Nested Sampling Algorithm. As a final note, the Bayes
Factor computed in actual analyses is always the ratio of Hi to noise which
is simply checking to see if there is any signal present at all. To discern
the overall Bayes Factor between two hypotheses, simply take the di�erence
between their respective Bayes Factors.

2.4 Sky Localization
As mentioned earlier, the primary focus of the work done this summer was

to broaden the capabilities of the existing analysis to include estimates of
the sky locations (including right ascension and declination) of the sources
of gravitational waves generated by binary black hole systems. In order to
determine the sky location, multiple detectors must be used in the analysis.
This introduces new complications to the analysis including the time delay
between various detectors and the di�erent antenna response patterns of the
detectors which were the primary focus in this report.

First, the time shift between the di�erent detectors physically originates
in their di�erent locations on the surface of the earth. A single wave which
passes through multiple detectors will reach each detector at a slightly di�er-
ent time. The detected signals therefore need to be time shifted and aligned
such that they are able to compared. In the analysis, the center of the earth
was taken to be the origin. Since each detector remains stationary on the
surface of the earth with respect to the Earth’s center, the time shift from
the center to a given detector remains constant. Once the simulated signal
is injected at each detector, a short segment of code simply applies the cal-
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culated time shifts of each detector to their respective injections e�ectively
time shifting them all to the center of the earth.

Next, some time must be taken to briefly describe the antenna response
pattern of the detectors and how they e�ect the analysis. The gravitational
wave detectors are extremely large interferometers meaning that they have
an intrinsically planar geometry. This implies that the sensitivity of the
detector has directional bias. They are optimally sensitive to waves prop-
agating normal to their plane and minimally responsive to those traveling
parallel. In Fig. 2.2 (A), the computed sensitivity of the Washington LIGO
detector as it varies over the entire sky is projected onto the celestial sphere.
It can bee seen that the detector is optimally sensitive to waves which come
from directly above and below the detector and diminishes to zero and the
peripheries.

Two things are important to note at this point. The first is that the
antenna response is dependent on both the plus and cross polarization of
the incident gravitational wave. For computational expediency and testing
purposes, only the plus polarization was applied to injected waves in the
current analysis. Plots of the antenna response pattern resulting only from
the plus polarization can be seen below in Fig. 2.2 (B) and Fig. 2.3 (B).
Future work will implement both the plus and cross polarization for a more
complete and real world analysis. Second, is the significant e�ect of the
antenna response pattern on the Bayesian parameter estimation.

One of the most outstanding e�ects of the antenna pattern is that it scales
the Bayes factors. This is expected as it follows directly from the fact that
it is harder to distinguish waves that cannot be as well detected. For the
same reasons, it is reasonable to expect that the sky location estimates in
the "darker" regions will be less reliable than those in more "visible" regions.
These expectation full be explored more thoroughly in Ch. 3.
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Figure 2.2: In (A) the total response pattern of the Hanford LIGO detector
including both plus and cross polarization contributions as projected onto
the celestial sphere. It is clear that detector is most sensitive to the areas
on the sphere which lie directly above and beneath it and attenuates to
zero along it periphery. In (B) the antenna response pattern of the Hanford
LIGO detector resulting from only the plus polarization contribution. This
is a much less physical result as it depicts only the detector’s response to
the plus polarization components of prospective gravitational waves as their
sources vary over the sky.
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Figure 2.3: In (A) the combined total response pattern of the Hanford
LIGO detector, Livingston LIGO detector, and the Virgo detector including
both plus and cross polarization contributions is projected onto the celestial
sphere. The combination of three detectors has significantly increased the
visibility. Particularly, there is no longer a connected bind of blind space
which wraps around he entire sphere. In (B) the antenna response pattern of
the aforementioned trio of detectors resulting from only the plus polarization
contribution is projected onto the celestial sphere. Again, this is a much less
physical result as it depicts only the detectors’ response to the plus polar-
ization components of prospective gravitational waves as their sources vary
over the sky. However, this is the only component used in the analysis pre-
sented later in this report and this is therefore the antenna response pattern
implemented in the analysis.
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Chapter 3

Results

In this analysis, 48 sky locations were selected for injection sites using the
program MEALPix (more information about MEALPix can be found at
http://www.gwastro.org/for20scientists/mealpix-matlab-healpix-interface-1).
Each waveform from each catalog was injected at each of the 48 sky loca-
tions and then compared against each of the three catalogs in the analysis.
This ultimately resulted in 6500+ jobs which are currently running on the
computing clusters at Caltech. As of the time of writing of this report, only
roughly one sixth of the jobs had finished. Fortunately, the analysis output
data as it progressed. At least partial data was produced concerning all sky
locations of all waveforms of the RO3 catalog. Since the rest of the data was
simply too incomplete, all of the preliminary results presented here will are
restricted to the analysis of the RO3 catalog.

3.1 Sky Localization
As mentioned earlier the aim of this project was to implement sky location

estimates into the analysis. In Ch. 2.4 above, the method for constructing
the estimates for the right ascension and declination is described. Each it-
eration of the nested sampling generates an estimate of the sky location. A
histogram of the estimates generates a distribution of likely values examples
of which can be seen below in Fig. 3.1 and Fig. 3.2. The waveforms were
injected with an SNR of 50 which is particularly high for real world simula-
tions but appropriate to the early stage testing reported here which simply
demonstrates the ability to determine sky location.
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Figure 3.1: Above is plotted a histogram of all the estimates of the declination
of the 10th waveform in the RO3 catalog on its entire range of possible values
from -fi

2 to fi

2 . The flat red line in the diagram is the prior distribution. As
can been seen, the distribution is sharply peaked about the best estimate of
.3611 which is remarkably close to the true value for the injection which was
.3398

These preliminary results seem to indicate that the analysis is able to
determine the sky location. The impressive accuracy of the estimates is of
course influenced by the high SNR used in the injections. However, it was
only the scope of this report to demonstrate the ability to deduce sky location
at all.

While the variation in the sky location estimates do seem to correlate
as expected with the antenna pattern, the precision of the estimates and
the sparse sampling of the sky made it di�cult to graphically represent.
However, the di�erence in the actual and estimated sky locations can be
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Figure 3.2: Above is plotted a histogram of all the estimates of the declination
of the 10th waveform in the RO3 catalog on its entire range of possible values
from 0 to 2fi. Although not depicted here, the prior distribution for this
estimate was similarly flat and very small in amplitude compared to the
histogram. Similar to Fig. 3.1, the distribution is sharply peaked about the
best estimate of 3.1385 which is again very close to the true value for the
injection which was 3.1415

seen as projected onto the celestial sphere in Fig. 3.3 alongside the antenna
response pattern used in the analysis and described above in Ch. 2.4.

While these early results seem to bode well for the success of the imple-
mentation of sky localization to the analysis much work remains to be done
to fully verify the success or failure. When the data is complete, a more
thorough and rigorous analysis of the data will be done. Afterwords, the
number of sky locations on the analysis will be increased to verify the suc-
cessful implementation of the antenna response pattern once both plus and
cross polarizations are implemented.
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Figure 3.3: In Fig. 3.3 (A), the absolute value of the average di�erence of
the actual to estimated right ascension was used as the radius of the circles
each of which was plotted at its respective sky location. In Fig. 3.3 (B), the
network plus polarization antenna pattern is plotted on the surface of the
sphere. While not certainly not conclusive in this preliminary analysis, there
can be seen a visual correlation between the radii of the circle (the di�erence
in the estimated and actual values) on the right, and the antenna pattern on
the left. Due to the high SNR used in the injections, the di�erences tended to
be very small. Therefore, the radii have been linealy scaled for visualization
purposes.

3.2 Bayes Factors
While sky localization is of central importance to the development of a full

gravitational wave based astronomy, it is essentially the Bayes factors which
are of concern in this algorithm as it determines whether or not a wave has
indeed been detected and if so the nature of its progenitor. It is therefore
worth the time to quickly look at some of the preliminary data concerning
the Bayes factors.
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Below can be seen a similar plot to that in Fig. 3.3. However, in this
plot, the Bayes factors of signal to noise have been averaged and used as the
radii of circles which are again plotted at their respective sky locations on
the sphere.

Figure 3.4: I this plot, the average Bayes factor across all wave forms and
catalogs has been used as the radii of the circles plotted at the respective sky
locations. The size of the circle is therefore a rough indicator of the analsis’
ability to distinguish signal from noise at the given sky location. Again, this
analysis is influenced by the high SNR. However, the purpose of this plot is
again to show the e�ect of the antenna response pattern on the analysis.
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Chapter 4

Conclusions

Given the limited nature of the data presented here, it would be inappro-
priate to try and draw any hard conclusions. However, It does appear in
general that the analysis is capable of deducing sky locations and correctly
implementing the combined antenna response patterns as well as other tech-
nical problems inherent in the implementation of multiple detectors in the
analysis.
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