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Abstract

There exist a number of models describing the gravitational wave signals produced by
coalescing compact binaries, including a group of phenomenological models calibrated with
”hybrid” waveforms. We examine how accurate these models need to be in order to avoid
adversly a↵ecting parameter estimation for equal-mass non-spinning binary black hole systems.
We do this by ”injecting” a hybrid waveform as a source and attempting to recover it with a
variety of template waveforms. The template waveforms use the same waveform as the source,
but may have di↵erent parameters and may be altered in a way that mocks up the error we
expect hybrid waveforms to have. We then track and interpret changes in the parameters of
the template waveforms that are most successful at recovering the source waveform.
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1 Introduction

Gravitational waves are ripples in the fabric of space and time caused by the acceleration of masses.
Since they are extremely small in magnitude they can only be detected when a very sensitive detector
is used to observe massive sources. (For a good introduction to gravitational waves, see [12].) There
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is a major international e↵ort to detect gravitational waves which is finally bearing fruit — when
the advanced LIGO and VIRGO detectors become operational within the next few years we hope to
detect gravitational waves from a variety of extrasolar sources. Successful detections would provide
the most stringent test to date of Einstein’s theory of general relativity, yield information about the
distribution of black holes and other massive objects in our universe, reveal more about extrasolar
events like supernovae, and maybe produce other discoveries which cannot be predicted.

Among the sources we hope to detect are coalescing compact binaries. These consist of either a
neutron star and a neutron star, a neutron star and a black hole, or a black hole and a black hole
orbiting each other and eventually colliding. The gravitational waves produced by coalescing com-
pact binaries are particularly appetizing to study because they create su�ciently large gravitiational
waves, depend on relatively few parameters, are predictable enough to use matched filtering on, and
can contain many cycles in the frequency range advanced LIGO and VIRGO are tuned for [3]. Due
to these traits, a significant e↵ort has gone into building models describing the signals produced
by coalescing compact binaries and assessing the accuracy of said models. There already exist
su�cient error criterion to determine if a model is accurate enough to be used to detect an event
as pointed out by [7] and others. Less work has been done to assess how accurate a model needs to
be to extract useful information about the parameters of the sourcesm, which is the primary goal
of this work. In particular, we will focus on parameter estimation accuracy requirements for binary
black hole (BBH) systems, much of which can be extended to neutron star-black hole binaries and
neutron star-neutron star binaries. We will further narrow down our focus to a particular type of
waveform modeling.

In the remainder of the the introduction we go over a brief overview of matched filtering and
waveform modeling for BBH systems. In the methods section we discuss the process of ”injecting”
waveforms and grid-based searches before moving on to the specific modified waveforms we use and
the results of using them. The discussion section goes over some of the implications of these results
along with future plans and limitations to the method used. We finish with acknowledgments and
references.

1.1 Gravitational waveform modeling for BBH systems

The gravitational waves produced by BBH systems as seen by the detectors depend on ⇠15 pa-
rameters — including the masses and spins of the black holes, the distance to the black holes, the
orientation of the orbital plane, the location in the sky, and the initial time and phase of observation.
The signals have three phases in their lifetime: inspiral, merger, and ringdown. During the inspiral
phase the two blackholes orbit around each other in a stable orbit with steadily decreasing radius.
The black holes then merge in the next phase, and finally in the ringdown phase any perturbations
in the new black hole are bled out.

In order to model this behavior, post-Newtonian (PN) approximations and numerical relativity
(NR) simulations are used (as well as perturbation theory for the ringdown phase). PN approxi-
mants are slow motion, asymptotic expansions in terms of the relative velocity of the black holes
v/c. They lose accuracy as the black holes get closer to merger and v increases. NR simulations are
discrete solutions to the Einstein field equations. While NR simulations are su�ciently accurate
they are also computationally expensive, especially for larger seperation distances, spins, and mass
ratios. As such, they generally start at the end of the gravitational wave signal and continue down
to some time in the inspiral shortly before merger.

One way of making use of these two methods is to combine them into a ”hybrid” waveform.
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Hybrid waveforms take a PN approximant for the earlier part of the gravitational wave signal, a
NR simulation for the later part, and stitch them together around some matching frequency !m in
the middle by utilizing a free time and phase shift. This limits the use of PN or NR methods in the
regimes where they are less viable. Hybrid waveforms are then used to calibrate phenomenological
models, such as IMRPhenomB [1] and IMRPhenomC [11]. Another technique that uses PN and
NR methods are e↵ective-one-body numerical relativity (EOBNR) models (for example [4, 10]).
EOBNR models use NR data to extend and inform analytical expressions. Ohme [9] provides a
brief and informative overview of the current state of BBH modeling.

Phenomenological models calibrated using hybrid waveforms are the focus of our work — in
particular we use IMRPhenomB. Past studies (including but not limited to [2, 3, 5, 6, 7, 9]) have
revealed information about the overal accuracy of hybrid waveforms as well as the individual pieces
of hybrid waveforms. From these we know that there some error in the hybrid waveforms is due to
error in the NR simulation and error in the process of stitching the NR and PN parts together, but
that the majority of the error in hybrid waveforms comes from the PN portion of the waveform [7].
One way to limit this inaccuracy is to increase the length of the NR portion of the waveform. Since
this is computationally expensive, an e↵ort has been made to determine the minimum necessary
length of NR data runs needed to insure su�cient accuracy [5, 7]. There are also multiple types of
PN approximants, and the accuracy of the approximant has been shown to be dependent on the
mass ratio used [6].

1.2 Matched filtering

Although the advanced LIGO and VIRGO detectors are very sensitive, the noise in the detectors is
expected to dominate over the gravitational wave signals. In order to extract a gravitational wave
signal from this noise, we use matched filtering. Matched filtering allows us to check if there is a
signal with a given form contained in the data, provided we know what that form is beforehand.
In order to do this we look at the noise-weighted inner product of two time-domain waveforms h1

and h2, defined as

hh1|h2i = 4Re

Z fmax

fmin

h̃1(f)h̃⇤
2(f)

Sn(f)
df. (1)

Here the tilda denotes the fourier transform of the respective time-domain waveform, fmin and
fmax describe the interval the detector is sensitive over, and Sn(f) is the power spectral density of
the detector noise. For our work we calculate Sn(f) from the zero-detuned, high-power advanced
LIGO noise curve (ZERO DET high P in [13]).

Consider some data d(t) composed of a gravitational wave signal s(t) and some noise n(t) such

that d(t) = s(t)+n(t).We might then investigate how much of a template waveform h(t, ~✓) is in d(t)

(Here ~✓ is a vector in the template’s parameter space that describes the specific set of parameters
used to calculate the template waveform.) This can be done by calculating the signal-to-noise ratio

(SNR(~✓)), which is

SNR(~✓) =
hh(~✓)|diq
hh(~✓)|h(~✓)i

. (2)

Maximized SNR’s for a given template as high as ⇠60 will possibly be detected, but a more standard
SNR will be on the order of ⇠10. (For a pleasant derivation of (1) and (2) see [8].) Another useful
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measure of examining di↵erences in waveforms is the overlap O(~✓),

O(~✓) = maxt0,�0

hh(~✓)|diq
hh(~✓)|h(~✓)ihd|di

= 1�M(~✓). (3)

In terms of the SNR, the overlap is a normalized SNR maximized over the initial time and phase
(t0 and �0 respectively) of the template waveform. It is related in (3) to the frequently used

mismatch M(~✓).
For parameter estimation, a more statistical approach is also useful. Such approaches often

make use of the likelihood L(~✓). Here the likelihood that for a specific ~✓ we have a waveform
described by d(t) is

L(~✓) = P (d|~✓) = exp

 
hd� h(~✓)|d� h(~✓)i

2

!
. (4)

Assuming a uniform prior P (~✓), the probability P (~✓|d) that given d(t) is described by ~✓ is then

P (~✓|d) / P (d|~✓)P (~✓) = N exp

 
hh(~✓)|di �

hh(~✓)|h(~✓)i

2

!
, (5)

where N is some normalization constant. The parameters can then be estimated by finding the
value of ~✓ that maximizes (5). A useful discussion on parameter estimation is again provided by [8].

2 Method

Since gravitational waves have yet to be detected, a common practice in assessing the accuracy of
waveforms is to set s(t) as a waveform thought to be reasonably correct. (This is generally referred
to as ”injecting” a signal.) If the injected waveform is trusted to be su�ciently accurate, the errors
that result from incorrectly modeling the injected waveform are expected to be similar to errors that
result from incorrectly modeling a true gravitational waveform. For our work we use stationary,
gaussian noise that averages to zero (n(t) = 0 and therefore d(t) = s(t)).

To compare a template waveform with an injected waveform for di↵erent values of ~✓ we perform
a grid-based search, or ”gridsearch”, over a section of parameter space. In a gridsearch we calculate
the SNR, the overlap, and/or the likelihood for various ~✓’s located on a grid in the parameter space.

For our gridsearches we inject an IMRPhenomB waveform by Ajith et al. [1] and use either a
modified or unmodified IMRPhenomB waveform as the template. IMRPhenomB depends on the

total mass of the system Mtotal, the symmetric mass ratio
⇣
⌘ ⌘

M1M2
(M1+M2)2

⌘
, a spin parameter that

accounts for the spin of both black holes, the initial time and phase of observation, and the e↵ective
distance to the source (which includes the sky location, the orientation of the orbital plane, and
the distance to the source). We limit our study to injected waveforms for equal-mass non-spinning
binaries with a total mass of between 10 and 40 M� at an e↵ective distance of 100 Mpc and with
no initial time or phase o↵set.

For our template waveforms we maximize the overlap, SNR, or likelihood (depending on the
type of gridsearch) over time and phase, we set the e↵ective distance to the e↵ective distance of the
injected waveform, and we use only non-spinning templates. This leaves Mtotal and ⌘ as unassigned
parameters to perform the gridsearch over. (There may also be parameters in the template waveform
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Figure 1: An overlap gridsearch performed with the template waveform varied over ⌘ and Mch.
The source is a 10-10 M� BBH.
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introduced by modifying IMRPhenomB, but since such parameters describe errors in the process
of modeling and not di↵erent sources we did not perform gridsearches over them.) A gridsearch

over Mtotal and ⌘ can be done over ⌘ and the chirp mass
⇣
Mch ⌘

(M1M2)
3/5

(M1+M2)1/5

⌘
instead, since there

is a one-to-one conversion between the two. (This is desirable because Mch features prominently in
form of the PN approximants.)

We show a standard overlap gridsearch that uses an unmodified IMRPhenomB template wave-
form in Figure 1. For brevity, we refer to gridsearches that use unmodified IMRPhenomB template
waveforms as ”unmodified” gridsearches and vice-versa for ones that use a modified IMRPhenomB
template waveform. Figure 2 shows six unmodified overlap gridsearches performed for di↵erent
total masses. The gridsearches in Figure 2 focus on higher overlap values, so anything below an
overlap of .90 shows only as dark blue. All gridsearches use 20 Hz as fmin and the highest frequency
over the entire grid at which the template waveform goes to zero as fmax. We use the unmodified
gridsearches as bases to compare modified gridsearches against.

As a quick note, we cannot entirely trust the values of our gridsearches due to statistical un-
certainty, but in practice are limited to considering regions we are confident to some percentage
contain the parameters that describe the true waveform. Baird et al. [2] suggest that as a rough
approximation for high SNRs, we can be 90% sure that the parameters that describe a source
waveform are contained within the .97 overlap contour for a gridsearch.

2.1 Three-stage Modified IMRPhenomB

To estimate the e↵ects of an incorrect waveform on parameter estimation we modify IMRPhenomB
to simulate errors. When a waveform di↵ers from nature’s waveform its phase evolution progresses
di↵erently, therefore creating an erroneous phase- or time-shift. We parametrize our modified
waveforms over the erroneous phase- or time-shift (↵ and ⌧ respectively) that occurs between two
frequencies flow and fhigh. For our first modified waveform, referred to as the three-stage modified
IMRPhenomB, we add no modifications before flow, increase ↵ or ⌧ uniformly between flow and
fhigh, and keep ↵ or ⌧ at a constant value past fhigh. The fourier transform of the three-stage
modified IMRPhenomB waveform1 is

h̃T (f) ⌘

8
><

>:

h̃unmod(f), f < flow
e�iQ(f)(↵+f⌧)h̃unmod(f), flow  f  fhigh
e�i(↵+f⌧)h̃unmod(f), fhigh < f.

(6)

Where h̃unmod(f) is the fourier transform of the unmodified IMRPhenomB waveform, and Q(f) is
a linear scaling function, Q(f) ⌘ f�flow

fhigh�flow
.

For various values of ↵ and ⌧ we perform modified overlap gridsearches using h̃T (f) as our
template waveform. These gridsearches address the error accumulated by an incorrect waveform
between the lowest frequency the detector is sensitive to a frequency NR simulations are expected
to reach. This corresponds to a flow equal to fmin and a fhigh calculated from Mtotal⌦high = .042
(fhigh = .042

2⇡Mtotal
). We vary ↵ between -1.0 and 1.0 rad while holding ⌧ at zero, and ⌧ between -.05

and .05 seconds while holding ↵ at zero.
To compare the modified gridsearches to the unmodified ones we look at the location of the

modified gridsearch’s best fit. If a template waveform exactly matches the injected waveform, the

1
This waveform was originally suggested by Harald Pfei↵er.
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Figure 2: Unmodified overlap gridsearches for various total masses. The top row contains grid-
searches for a total mass of 10 and 15 M� on the left and right respectively. The middle row
contains gridsearches for a total mass of 20 and 25 M�. The bottom row contains gridsearches for
a total mass of 30 and 40 M�.
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Figure 3: Overlap contour plot for increasing ↵. The dashed line indicates the .97 overlap contour.
The total mass in solar masses for each series of modified gridsearches is given in the key.

parameters used to create the template waveform at the best fit will also be the parameters used
to create the injected wavorm (provided n(t) = 0). If the template waveform does not completely
match the injected waveform then this will not be the case, and the best-fit will be at a di↵erent
location in the parameter-space. The di↵erence in location is an estimate of systematic bias built
into the gridsearch. Using the approximation mentioned above, if the location of the best fit for
a modified gridsearch is still within an unmodified gridsearch’s .97 overlap contour, the statistical
uncertainty exceeds the systematic bias. When the best fit falls outside the .97 overlap contour the
systematic biases contributed by the template waveform are certainly worth considering.

As we increase the magnitude of ↵ or ⌧ we track the location of the modified gridsearch’s best
fit in the ⌘-Mch plane, as well as the overlap of the unmodified gridsearch at that point. Similar
to the unmodified gridsearches in Figure 2, there are many local extrema in a given modified
gridsearch. These extrema are often very similar in height while the values around them quickly
drop o↵, allowing an incorrect estimation of the area the best fit is near. This can be a large
distance in the ⌘-Mch plane, and can therefore significantly a↵ect results. To correct for this, we
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Figure 4: Overlap contour plot for decreasing ↵
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Figure 5: Overlap contour plot for increasing ⌧ .

created smaller and denser gridsearches around the best fit and the second highest value on the
gridsearch. From these we selected the new highest value as the ”true” best fit. Figures 3 and 4
plot the the unmodified gridsearch overlap value at the location of the best fit versus the ↵ value
used in generating the modified gridsearch. Figures 5 and 6 show the same for various ⌧ ’s. The
paths traced out by the best fit as ↵ is varied positively for a Mtotal of 20 and 25 M� are shown in
Figure 11. All the best fit paths are found in in the Appendix.

2.2 PN-term Modified IMRPhenomB

Our second modified waveform, the PN-term modified IMRPhenomB, focuses on the e↵ects of error
accumulated in the PN phase description. The unmodified phase [1] of IMRPhenomB is

 (f) ⌘ 2⇡ft0 + �0 +
3

128⌘⌫5

 
1 +

7X

k=2

⌫k k

!
. (7)
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Figure 6: Overlap contour plot for decreasing ⌧
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Figure 7: Best fit path plots for Mtotal of 20 and 25 M� (left and right respectivly). We vary ↵
from 0.0 to 1.0 rad in increments of 0.1 rad.
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Figure 8: Overlap contour plot for increasing ↵P .

Where ⌫ = (⇡Mtotalf)1/3,  k are various constants, and ⌫k k corresponds to the k/2 PN order
correction term (for instance, ⌫7 7 corresponds to the 3.5 order PN term). We introduce error as a
4.0 order PN term, ⌫8 8, with the constant  8 parametrized by ↵P , the erroneous phase di↵erence
accumulated betwen flow and fhigh. The PN-term modified IMRPhenomB is

h̃PNmod(f) ⌘

8
<

:
exp

⇣
�i3⌫(f)3 8

128⌘

⌘
h̃unmod(f), f  fhigh

exp
⇣

�i3⌫3
high 8

128⌘

⌘
h̃unmod(f), fhigh < f,

(8)

 8 ⌘
128⌘↵P

3(⌫3high � ⌫3low)
. (9)

We define ⌫high ⌘ ⌫(fhigh) and ⌫low ⌘ ⌫(flow). We repeat the same modified procedure we use for
the three-stage modified IMRPhenomB by varying ↵P between -1.0 and 1.0 rad, with the results
displayed in Figures 8 and 9.
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Figure 9: Overlap contour plot for decreasing ↵P

14



3 Discussion

By creating modified versions of a waveform and comparing them to unmodified waveforms we have
attempted to simulate the type of disagreements we might expect between a model waveform and a
waveform produced by nature. In our study we limited our e↵orts to equal-mass, non-spinning BBH
systems. We focused on error accumulated between the start of the detector’s sensitivity range at
20 Hz and our estimate for a frequency future NR runs might go down to, Mtotal⌦high = .042. The
three-stage modified IMRPhenomB added the error in the modified waveform uniformly over our
region of interest, while our PN-term modified IMRPhenomB added the error as a user-specified
4.0 PN term.

Figures 3 and 4 reveal that three-stage modified gridsearches varied over ↵ the gridsearches
with a Mtotal value of 15 or 20 M� exit the .97 overlap contour first with a magnitude of ⇠0.9 rad
for both positive and negative ↵’s, while gridsearches with other total masses exit later. Figures 5
and 6 show the best fits exiting the .97 overlap contour at a similar yet erratic rate. For three-stage
modified gridsearches varied over ⌧ , the earliest exit for positive ⌧ is ⇠0.04 seconds and the earliest
exit for negative ⌧ has a magnitude of ⇠0.025 seconds. These correspond to an accumulated phase
di↵erence between flow and fhigh of ⇠2.7 and ⇠2.3 rad respectively.

From Figures 8 and 9 we observe for a PN-term modified gridsearch varied over ↵P , the earliest
positive exit is for a Mtotal of 25 M� and an ↵P of ⇠0.7 and the earliest negative exit is for the
same total mass and an ↵P of magnitude ⇠0.6. If we take the lowest phase di↵erence that causes
the best fit to exit the .97 contour across both modified waveforms as a rough estimate for a lower
limit, we can see that for modeled waveforms with an erroneous phase di↵erence less than ⇠0.6 the
statistical uncertainty is greater than the systematic bias produced. Similarly, modeled waveforms
with an erroneous time di↵erence less than ⇠0.02 seconds satisfy the same condition.

There are a few things to mention about the method used. First, even though we corrected for
di�culties in determining the best fit, we believe, partially due to the erratic behavior of the best
fit paths, that the best fit may still not be estimated correctly. This is accounted for in the error
bars. However, a better method of finding the best fit and more conservative error bars are worth
considering. The location of the best fit may also not reflect the behavior of the entire modified
gridsearch, which leads into a discussion on ongoing e↵orts and future plans.

We have developed an approach to assessing di↵erences between modified and unmodified grid-
searches that focuses on more averaged quantities. The method involves creating modified and
unmodified likelihood gridsearches. We then integrate the unmodified likelihood gridsearch, and
consider the area Aunmod that makes up a percentage Punmod of it, say 90%. We then calculate
the percentage Pmod of the integrated modified gridsearch that falls within Aunmod and plot Pmod

versus Punmod. If the modified waveform were to be exactly the same as the unmodified one (i.e., we
considered two unmodified waveforms), this ”P-P” plot would be a diagonal line. We are currently
working to produce these type of results for the same gridsearch parameters we have used so far.
We expect to share all our results in some form, perhaps in a paper, within a year.
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Figure 10: Best fit path plots for Mtotal of 10 and 15 M� (left and right respectivly). We vary ↵
from 0.0 to 1.0 rad in increments of 0.1 rad.
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Figure 11: Best fit path plots for Mtotal of 20 and 25 M� (left and right respectivly). We vary ↵
from 0.0 to 1.0 rad in increments of 0.1 rad.
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Figure 12: Best fit path plots for Mtotal of 30 and 40 M� (left and right respectivly). We vary ↵
from 0.0 to 1.0 rad in increments of 0.1 rad.
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Figure 13: Best fit path plots for Mtotal of 10 and 15 M� (left and right respectivly). We vary ↵
from 0.0 to �1.0 rad in increments of 0.1 rad.
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Figure 14: Best fit path plots for Mtotal of 20 and 25 M� (left and right respectivly). We vary ↵
from 0.0 to �1.0 rad in increments of 0.1 rad.
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Figure 15: Best fit path plots for Mtotal of 30 and 40 M� (left and right respectivly). We vary ↵
from 0.0 to �1.0 rad in increments of 0.1 rad.
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Figure 16: Best fit path plots for Mtotal of 10 and 15 M� (left and right respectivly). We vary ⌧
from 0.0 to 0.05 seconds in increments of 0.05 seconds.
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Figure 17: Best fit path plots for Mtotal of 20 and 25 M� (left and right respectivly). We vary ⌧
from 0.0 to 0.05 seconds in increments of 0.05 seconds.
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Figure 18: Best fit path plots for Mtotal of 30 and 40 M� (left and right respectivly). We vary ⌧
from 0.0 to 0.05 seconds in increments of 0.05 seconds.
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Figure 19: Best fit path plots for Mtotal of 10 and 15 M� (left and right respectivly). We vary ⌧
from 0.0 to �0.05 seconds in increments of 0.05 seconds.
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Figure 20: Best fit path plots for Mtotal of 20 and 25 M� (left and right respectivly). We vary ⌧
from 0.0 to �0.05 seconds in increments of 0.05 seconds.
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Figure 21: Best fit path plots for Mtotal of 30 and 40 M� (left and right respectivly). We vary ⌧
from 0.0 to �0.05 seconds in increments of 0.05 seconds.
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B Best Fit Paths for PN-term Modified IMRPhenomB Tem-

plates
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Figure 22: Best fit path plots for Mtotal of 10 and 15 M� (left and right respectivly). We vary ↵P

from 0.0 to 1.0 rad in increments of 0.1 rad.
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Figure 23: Best fit path plots for Mtotal of 20 and 25 M� (left and right respectivly). We vary ↵P

from 0.0 to 1.0 rad in increments of 0.1 rad.
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Figure 24: Best fit path plots for Mtotal of 30 and 40 M� (left and right respectivly). We vary ↵P

from 0.0 to 1.0 rad in increments of 0.1 rad.
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Figure 25: Best fit path plots for Mtotal of 10 and 15 M� (left and right respectivly). We vary ↵P

from 0.0 to �1.0 rad in increments of 0.1 rad.
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Figure 26: Best fit path plots for Mtotal of 20 and 25 M� (left and right respectivly). We vary ↵P

from 0.0 to �1.0 rad in increments of 0.1 rad.
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Figure 27: Best fit path plots for Mtotal of 30 and 40 M� (left and right respectivly). We vary ↵P

from 0.0 to �1.0 rad in increments of 0.1 rad.
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