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Abstract: We explore the information about cosmology that can be gleaned by simulating 
gravitational wave signals from binary black hole coalescence events. Using a galaxy catalog, 
we select a certain preferential set of galaxies to use as injections for binary black hole 
merger events. After generating various parameters randomly, we set up our network of 
detectors. We calculate the antenna response patterns and signal-to-noise ratio for each signal 
and each detector, allowing us to determine which signals would be detectable by which 
detectors in the network. After making our mock detections, we discern which original 
galaxies the signals could possibly come from by adding a certain amount of noise to the 
original parameters and searching within an error box on the sky for possible galaxy matches. 
We then use information about those galaxies to calculate their redshift. Then, we calculate 
the Hubble constant for each galaxy and use a histogram to determine the true value. After 
some experimentation with different approximations for the Hubble constant, we arrived at 
the value of 69.56 km/s*Mpc, given a theoretical value of 70 km/s*Mpc.  
 

I. INTRODUCTION 
 

Gravitational waves are theorized to be ripples in 
space-time that are caused by moving large masses.  
There are multiple likely sources of these waves, 
including the gravitational collapse of stars such as 
those that produce supernovae or gamma-ray bursts, 
gravitational wave pulsars such as stars with non-
symmetric deformations, merging binary systems, and 
the stochastic background, which is the random 
gravitational wave field throughout the universe. This 
project deals primarily with merging binary systems 
as a gravitational wave source. These can be the 
mergers of two neutron stars, a neutron star and a 
black hole, or two black holes. Specifically, we will 
be dealing with binary black hole coalescence events. 
Black holes can create gravitational waves during 
inspiral, the period of orbital decrease as the two 
black holes grow closer to one another, and also 
during ring down, the phase after merging where the 
single black hole is distorted in shape. Binary black 
hole mergers are theoretically the strongest source of 
gravitational waves [4].  

Binary black holes are important to this project 
because changes in their masses are caused by the 
accretion of dark energy. The orbital changes of a 
binary system are induced by energy loss from 
gravitational radiation. Because binary black holes 
radiate gravitational waves with a power proportional 
to their masses, these gravitational waves carry 
information about dark energy [4]. Dark energy is a 
theoretical energy that permeates all of space and 

accelerates the expansion of the universe. Its 
counterpart, dark matter, is seen by its gravitational 
effects on visible matter. In fact, the total mass-energy 
of the universe is roughly 4.6% ordinary matter, with 
24% dark matter and 71.4% dark energy [6].  

Studying gravitational waves can help us to learn 
more about general relativity and cosmology. 
Cosmologists desire to learn more about the structure 
and evolution of the universe. One of the most 
important ways to study this is to discover the 
densities of the various types of matter in the 
universe. The average density of matter in the 
universe determines if the universe is closed and 
finite, or open and infinite. If the value of the average 
density is close to the critical density between the 
two, the universe is flat but still infinite. Likewise, 
the distribution of dark matter and energy affects if 
the universe is expanding or contracting, and how 
quickly it is doing either. Simulating gravitational 
wave signals not only allows us to develop 
algorithms that could be used to calculate the various 
cosmological parameters from real gravitational wave 
detections, but also gives us a tool to see how various 
networks of detectors can help us determine these 
crucial matter densities and learn more about the 
nature of the universe [6]. 

 
 
 
 
 
 



II. BACKGROUND 
 

A. Project Overview 
 

In this project, we seek to determine the 
cosmological parameters from simulated 
gravitational wave signals of binary black hole 
mergers. To accomplish this, we use a galaxy catalog 
based on the Millennium Simulation to select 
galaxies for the black hole coalescence events. We 
randomly generate various parameters and create a 
mock detector network. Then, we determine which 
of the signals would actually be detected, and add 
some randomly generated noise to those signals. We 
then use that noise to search for galaxies in the 
catalog that could be possible sources for the signals, 
and then use the redshifts of those galaxies to 
determine the cosmological parameters. The main 
MATLAB code written for this project is located in 
Appendix A. Supplementary, original functions are 
included in Appendices B through D.  

 
B. Millennium Simulation 

 
For this project, the galaxy catalog we used is 

derived from the Millennium Simulation. This 
simulation was performed by the Virgo Consortium 
for Cosmological Supercomputer Simulations and is 
the largest N-body simulation ever carried out. The 
simulation is used to study the evolution of the 
universe and structure formation caused by dark 
matter [5]. The galaxy catalog was created by Dr. 
Laura Nuttall, and contains over 40 million galaxies. 
Figure 1 was created by Dr. Nuttall and shows a 
three-dimensional mapping of all the galaxies in her 
catalog. 

 

C. Network of Detectors 
 

We looked at a specific network of detectors in 
order to detect the generated binary black hole 
coalescence events. Specifically, we used Advanced 
LIGO, including the Hanford, Washington and 
Livingston, Louisiana sites, Advanced VIRGO in 
Italy, LIGO India, KAGRA in Japan, and the Einstein 
Telescope that would be located somewhere in 
Europe. Not all of these detectors are up and running 
yet, but we used their power spectral densities to 
determine their potential detection power.  

 
D. The Einstein Telescope 

 
The Einstein Telescope (ET) is the most important 

detector in this project’s network. As a third 
generation gravitational wave detector, it would be 
more sensitive than the advanced detectors by a factor 
of 10 [2]. This increase in sensitivity would give it a 
much high signal-to-noise ratio than any of the other 
network detectors, allowing for a high detection rate. 
It is suspected that the Einstein Telescope would 
allow us to better determine the cosmological 
parameters. One component of this project is to 
examine how well these parameters can be 
determined both with and without the Einstein 
Telescope included in the detector network. Figure 2 
shows an artistic rendering of what the Einstein 
Telescope could look like.  

E. Cosmological Parameters 
 

This project seeks to determine the parameters that 
define the ΛCDM model of the universe, the Λ - Cold 
Dark Matter model. This is the currently accepted 
model that states the universe has a cosmological 
constant and is populated by cold dark matter. The 
particular parameter that we find in this project is the 
Hubble Constant, !! , which tells us the current Figure'1:'Map'of'galaxy'catalog'(Nuttall) 

Figure'2:'The'Einstein'Telescope'(http://www.et@gw.eu/etimages) 



expansion rate of the universe. Other important 
parameters that could one day be derived from this 
work are ΩΛ, the dark energy density, ΩM, the dark 
matter density, and w, the dark energy equation of 
state [3]. Equation 1 shows the relationship between 
these four parameters, where z is redshift and Ωd is 
ΩΛ. 
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III. SIGNAL INJECTIONS 

 
A. Galaxy Catalog 

 
The galaxy catalog contains over 40 million 

galaxies and is complete to 750 Mpc. For each 
galaxy, the sky position (right ascension and 
declination) is given. Also given is the luminosity 
distance and an error on that value, a number 
indicating how spiral or elliptical the galaxy is, and 
the luminosity with an error on that value. It would be 
computationally impractical to use the entire catalog, 
so we have developed a method for randomly 
selecting which galaxies to use.  
 

B. Weighted Random Selection 
 

We developed a program to randomly select any 
desired number of galaxies to use as binary black 
hole coalescence events. For the purpose of this 
project, it is assumed that every selected galaxy has a 
coalescence event. The program gives preference to 
elliptical galaxies over spiral galaxies 60% of the 
time, although this percentage is variable. The reason 
for this is that elliptical galaxies are older and 
therefore have greater chances of having a merger 
event. This selection is accomplished by generating a 
random number and then checking if that number 
falls between 0 and 0.6 or above 0.6. If the number is 
below 0.6, an elliptical galaxy will be selected. 
Secondly, the program gives a weighted preference to 
brighter galaxies by first dividing each luminosity 
value by the sum of all values. These values are then 
sorted and the cumulative sum of each value and all 
previous values is calculated. The program then 
selects galaxies with smaller cumulative sums and 
greater brightness values. Typically, 1,000 galaxies 
were selected for each trial. As many as 10,000 were 
selected for longer runs, and as few as 100 were 
selected for short trials. One thousand was the 
optimal number to get enough detections to use for 

the remainder of the program. Figure 3 shows the sky 
positions of all selected galaxies in right ascension 
versus declination.  

The declination of the galaxies ranges from − !
! to !! 

radians. Right ascension ranges from 0 to 2! radians. 
Figures 4 and 5 illustrate this.  
 

Figure'3:'Sky'positions'of'selected'galaxies 

Figure'4:'Distribution'of'declination 

Figure'5:'Distribution'of'right'ascension'



The values for luminosity distance were given in the 
catalog for each galaxy. They ranged from 0 to 750 
Mpc. This is seen in Figure 6.  

!
Figure'6:'Distribution'of'distance'

These are all of the parameters for each galaxy that 
were included in the catalog. Other parameters are 
needed to calculate the detectability of each signal, so 
those parameters were randomly generated.  

 
C. Generating Parameters 

 
The inclination angle, which is the angle between 

the line-of-sight to a merging binary from Earth and 
the angular momentum of the binary, is randomly 
generated and uniformly distributed in cosine. It 
ranges from 0 to ! radians, as can be seen in Figure 
7. 

!
Figure'7:'Distribution'of'inclination'angle'

The polarization angle is the orientation of the orbit 
of the binary on the sky with respect to the 
orientation of the detector. It is also randomly 
generated and uniformly distributed between 0 and !! 
radians, as is seen in Figure 8.  

!
Figure'8:'Distribution'of'polarization'angle'

IV. DETECTIONS 
 

A. Detector Network 
 

After creating our signals, we set up our detector 
network. The program is capable of using several 
combinations of the following detectors: Initial LIGO 
and VIRGO, Advanced LIGO and VIRGO, LIGO 
India, KAGRA, and ET. The various cases are: only 
initial LIGO and VIRGO; only advanced LIGO and 
VIRGO; advanced with LIGO India; only ET; 
advanced, India, and ET; and advanced, India, ET, 
and KAGRA. Typically, all detectors were used at 
once. Each detector in the network has a power 
spectral density function.  

 
B. Making Detections 

 
The masses of the black holes were generated 

randomly for each galaxy between three and 15 solar 
masses, which is what they would be for binary black 
hole systems. This is seen in Figures 9 and 10.  

!
Figure'9:'Distribution'of'Mass'1'



!
Figure'10:'Distribution'of'Mass'2'

In order to detect the mock signals from each 
galaxy, first the F+ and Fx antenna responses were 
calculated for each detector and galaxy combination. 
Next, the signal-to-noise ratio (SNR) was calculated 
for each detector and galaxy combination using 
Equation 2, where G is the gravitational constant, C is 
the speed of light, M is the chirp mass (a composite 
of both masses), dL is the luminosity distance, and ! is 
the inclination angle.  
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The equation also uses the calculated antenna 

responses and the power spectral density function for 
each detector. After the SNR has been calculated for 
each galaxy and each detector, we figure out which 
galaxies would actually be detectable by our network. 
We search for galaxies that have SNR greater than 
five in at least two detectors, and then galaxies that 
have a quadrature sum SNR greater than 12. This 
allows us to realistically determine which galaxies 
would actually be detected in a real scenario. The 
typical detection rate using all detectors is about 
99.5%, which is expected. This high detection rate is 
greatly helped by including ET, because ET typically 
produces much higher SNR values than the other 
detectors.  

 
C. Adding Noise 

 
After we have made our detections, we add noise to 

the parameters for only the detected galaxies. The 
purpose of this is to produce an error box that we can 
then use to search the catalog for galaxy candidates 
for each signal. For most of the parameters, the noise 

has Gaussian distribution with various widths for 
different parameters. The widths are as follows: 0.01 
for the total mass, 0.1 for the mass ratio, 5 degrees for 
right ascension and declination, 3 for luminosity 
distance, 50 degrees for the inclination angle, and 25 
degrees for the polarization angle. All of these widths 
are also divided by the system SNR, which is 
calculated by squaring all of the SNR values for each 
detector for one galaxy, and then taking the square 
root of that value. From this point forward, only the 
system SNR is used and not individual SNR values 
for particular detectors. Noise is also added to the 
system SNR with a chi-square distribution. Error 
values are randomly generated using the methods and 
widths described above, and then randomly added to 
or subtracted from all of the original values.  

 
V. LOCATING SIGNALS 

 
A. Reconstructing Error Box 

 
After adding in the noise, we use it to reconstruct 

an error box on the sky and then search in that box 
for each signal to attempt to figure out which galaxy 
in the catalog the signal came from. All galaxies in 
each signal’s error box are included as possible 
sources. For some signals there are few or no galaxies 
found, and for some there are hundreds.  

The error box is formed by taking just one detected 
signal and its distance, right ascension, and 
declination. Then, we search for any galaxies that 
have a distance value of the signal distance plus or 
minus its noise value. The same is done for right 
ascension and declination. This gives us three lists of 
galaxies that match the signal’s distance and position 
components. By finding galaxies present in all three 
lists we develop a master list of potential source 
galaxies for each signal. Figure 11 illustrates the error 
box concept.  

 
 
 
 
 
 
 
 
 
 
 
 
Figure'11:'Error'box 



The mark in the center of the diagram is the actual 
galaxy that the signal came from, with a line to the 
point, Earth, that represents the real distance. The 
blue box includes the distance plus the noise and the 
distance minus the noise, and so includes the 
surrounding galaxies that will be found in the error 
box search.  

 
B. Finding Hubble Parameter 

 
After generating a list of potential sources for each 

signal, we can proceed with calculating the 
cosmological constants. From this point forward, we 
no longer use the list of signals we detected, but only 
the list of potential source galaxies. In a realistic 
scenario, gravitational waves would be detected and 
then the source galaxies for the signals would be 
determined, so we use only that data.  

First, we calculated the redshift for each galaxy 
using the luminosity distance from the catalog, the 
desired dark matter percentage, 0.24, and a theoretical 
value of !!, 70. Then, using the redshift value for 
each galaxy, the luminosity distance from the catalog, 
and the speed of light, we calculated the Hubble 
parameter using the approximation where redshift is 
much less than 1. The formula used is seen in 
Equation 3. 

!! = !∗!
!!
!!"#!! ≪ 1![2]               (3) 

 
Then we created a histogram of all the !! values 

for all of the source galaxies, with the hope that it 
would peak at the true value.  

 
VI. RESULTS 

 
A. First Results and Issues 

 
Our first histograms all seemed to peak around 62.5 

km/s*Mpc. This was slightly disappointing given that 
our target value was 70 km/s*Mpc. In addition, our 
histograms were all one-sided, with only a right side. 
Figure 12 shows an example of this result.  

!
Figure'12:'One@sided'histogram'for'Hubble'Parameter'

We attempted multiple changes to try to get a more 
accurate value.  

 
B. Changing Sigma Values 

 
First, we tried decreasing the noise errors by a 

factor of 10. This proved to have no effect on the 
histogram’s shape or the value of the Hubble 
constant. Next, we tried increasing the sigma values 
for the error box, essentially doubling it in size and 
then tripling it. This drastically increased the number 
of potential source galaxies, on the supposition that 
adding more values of the Hubble constant would 
help the real value to stand out more accurately. 
Figures 13 and 14 show these results.  

!
Figure'13:'Doubled'error'box'

!



!
Figure'14:'Tripled'error'box'

These histograms continue to show a value for the 
Hubble constant of 62.5 km/s*Mpc. The only 
difference is that the number of galaxies increases 
vastly. In addition, the histograms are still one-sided. 
In order to verify that there was no issue with the way 
the program was selecting or finding galaxies, we 
calculated the redshift and Hubble constant for all 40 
million galaxies in the catalog and found that the 
histogram for those Hubble parameter values peaked 
in the same place, 62.5 km/s*Mpc. The average 
Hubble constant value for the whole catalog was 
consistent with the original histograms, verifying that 
the issue was with the way the Hubble constant was 
being calculated and not with the galaxy selection or 
some other component of the program.  
 

C. Removing ET 
 

We also tried removing ET from the detector 
network to see if this would have an effect on the 
Hubble constant calculation. Only using Advanced 
LIGO and VIRGO, LIGO India, and KAGRA 
produced a 94.4% detection rate, as opposed to the 
previous 99.5% detection rate with ET. This was 
expected due to ET’s vastly superior detection power. 
There was ultimately no change in the Hubble 
constant, demonstrating that the detection rate has no 
effect on this calculation. Figure 15 shows that the 
value is still 62.5 km/s*Mpc.  

!
Figure'15:'Hubble'Constant'without'ET'

This also matches the value for the entire galaxy 
catalog, showing that the value is not dependent on 
any detector set but either on the catalog itself or the 
way in which it is calculated. !

 
D. Changing Approximation 

 
We then switched to a different, more precise 

method of approximating the Hubble constant. The 
assumption that redshift is much less than 1 is not 
actually that accurate, given that our redshift values 
were typically on the order of 0.1. The new 
approximation is given in Equation 4, where z is 
redshift and c is the speed of light. dL is the 
luminosity distance, but instead of using the distance 
for the source galaxy from the catalog, we used the 
distance with the noise estimate figured in for the 
corresponding signal galaxy.  

 
!! = ! !!! !!!
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!
In this equation, h(z) is given by Equation 5. This is 

a simplified form of Equation 3, where the dark 
matter and energy densities are included. The values 
used were 0.24 and 0.76.  
 

ℎ ! = ! [Ω! 1+ ! ! + Ω!]!/!![2]!!!!!!!!!(5) 
!

The result of using this new approximation was a 
highly improved Hubble constant value. The new 
value is 69.56 km/s*Mpc, which is extremely close to 
the expected value of 70 km/s*Mpc. However, the 
histogram is still one-sided. Figure 16 shows the new 
result.  



!
Figure'16:'New'Hubble'constant'

These results are much more in line with what we 
expected, and show a big improvement on the initial 
results. We would still like to investigate why the 
histogram is one-sided.  
!

 VII. CONCLUSIONS 
 

This project has been moderately successful in 
determining the Hubble constant from theoretical 
black hole coalescence signals. At the time when 
gravitational wave detections are made, this work 
will be useful in making that calculation. We have 
learned that we can accurately determine the Hubble 
constant from such observations with some degree of 
error. This project has a vast potential future. The 
next steps would include determining the other 
cosmological parameters, including the dark matter 
and energy densities and the dark energy equation of 
state. In this way, binary black hole mergers could 
give us information about the nature of dark matter 
and energy. This project is similar to the ET mock 
data challenge, which involves using actual injections 
of mock ET data and detecting the signals through an 
analysis pipeline. This project is essentially a mock of 
the mock data challenge in that it does not use mock 
ET data and simulates the detection process. 
However, this project can offer similar benefits in 

helping to determine ET’s capabilities and detection 
power. This project may be limited by the galaxy 
catalog, which is only complete to 750 Mpc. A larger, 
more complete catalog with higher redshifts may 
yield different results. Another next step for this 
project could involve repeating the process with a 
new catalog, and then going on to calculate the other 
parameters.  
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Appendix A – Main Program 

 
%This code created by Teresa Symons 2013 
%Requires galaxy catalogue to run 
 
clc 
clearvars -except galaxy spiral elliptical galred hub 
close all 
%**For this code to work, you must first load the milliennium full 
%catalogue, spiral, elliptical, galred, and hub** 
 
% select configuration of detectors: 



% initial = HLV 
% enhanced = HLV 
% advanced = HLV 
% advanced/india = HLVI 
% et = E 
% et and advanced = HLVIE 
% et/advanced/kagra = HLVIKE 
 
config = 'et/advanced/kagra'; 
 
%load appropriate galaxy catalog 
%you MUST run this if you have not loaded a catalogue yet 
%load('fake_millennium_full.mat') 
 
%split galaxies by spiral and elliptical 
%this doesn't need to be run again, but you MUST load 'spiral' and 
%'elliptical' for this code to work 
% spiral = 
[galaxy.dec(galaxy.type==1),galaxy.ra(galaxy.type==1),galaxy.type(galaxy.type==1),galaxy.Lfr
ac(galaxy.type==1),galaxy.Lfracerr(galaxy.type==1),galaxy.d(galaxy.type==1),galaxy.derr(gala
xy.type==1)]; 
% elliptical = [galaxy.dec(galaxy.type==-1),galaxy.ra(galaxy.type==-
1),galaxy.type(galaxy.type==-1),galaxy.Lfrac(galaxy.type==-1),galaxy.Lfracerr(galaxy.type==-
1),galaxy.d(galaxy.type==-1),galaxy.derr(galaxy.type==-1)]; 
 
%This is just a test to see the horizon distance of all the detectors 
% det = 'LHO'; 
% r = horizdist(det); 
% hdist(1,1) = r; 
% det = 'LLO'; 
% r = horizdist(det); 
% hdist(1,2) = r; 
% det = 'Virgo'; 
% r = horizdist(det); 
% hdist(1,3) = r; 
% det = 'aLIGO'; 
% r = horizdist(det); 
% hdist(1,4) = r; 
% det = 'aVirgo'; 
% r = horizdist(det); 
% hdist(1,5) = r; 
% det = 'ETB'; 
% r = horizdist(det); 
% hdist(1,6) = r; 
% det = 'KAGRA'; 
% r = horizdist(det); 
% hdist(1,7) = r; 
% varargin{1} = 'LLO'; 
% hdist(1,8) = r; 
 
%This defines the amount of galaxies you want to pick from the catalogue 
newamt = 1000; 
 
%Here and below is old code no longer needed 
%restrict amount of sources by distance 
% ind = find(galaxy.d<=max(r)); 
% amt = length(ind); 
% newind = round(1 + (amt-1).*rand(newamt,1)); 
 
%import ra, dec, and distance for distance limit desired 
% for num = 1:length(newind) 
%     theta(num,:) = galaxy.ra(ind(newind((num))))/24*2*pi; 
%     phi(num,:) = galaxy.dec(ind(newind((num))))*pi/180; 
%     dist(num,:) = galaxy.d(ind(newind((num)))); 



%     disterr(num,:) = galaxy.derr(ind(newind((num)))); 
% end 
 
%random numbers between 1 and length of elliptica/spiral for indices 
% newinde = round(1 + (length(elliptical)-1).*rand(newamt,1)); 
% newinds = round(1 + (length(spiral)-1).*rand(newamt,1)); 
 
%This is preparation to chose brighter galaxies over dimmer ones 
%create new column with lfrac divided by sum of lfrac 
% new = sum(elliptical(:,4)); 
% elliptical(:,8) = elliptical(:,4)./new; 
% new2 = sum(spiral(:,4)); 
% spiral(:,8) = spiral(:,4)./new2; 
 
%sort in descending order 
% [elliptical(:,8),elliptical(:,9)] = sort(elliptical(:,8),'descend'); 
% [spiral(:,8),spiral(:,9)] = sort(spiral(:,8),'descend'); 
 
%find cumsum of result 
% elliptical(:,10) = cumsum(elliptical(:,8)); 
% spiral(:,10) = cumsum(spiral(:,8)); 
 
%This is the percentage of elliptical galaxies desired 
pctellip = 60; 
%random selection weighted by distance and shape 
for i = 1:newamt 
    choice = rand; 
    if choice < (pctellip/100) 
        [c index] = min(abs(elliptical(:,10)-choice)); 
        newind = elliptical(index,9); 
        theta(i,:) = elliptical(newind,2)/24*2*pi; 
        theta2(i,:) = elliptical(newind,2)*360/24; 
        phi2(i,:) = elliptical(newind,1); 
        phi(i,:) = elliptical(newind,1)*pi/180; 
        dist(i,:) = elliptical(newind,6); 
        type(i,:) = 'e'; 
    elseif choice > (pctellip/100) 
        [c index] = min(abs(spiral(:,10)-choice)); 
        newind = spiral(index,9); 
        theta(i,:) = spiral(newind,2)/24*2*pi; 
        theta2(i,:) = spiral(newind,2)*360/24; 
        phi2(i,:) = spiral(newind,1); 
        phi(i,:) = spiral(newind,1)*pi/180; 
        dist(i,:) = spiral(newind,6); 
        type(i,:) = 's'; 
    end 
end 
 
%Old code no longer needed 
%import ra, dec, and distance for distance limit desired 
%         for num = 1:length(newind) 
%             theta(num,:) = galaxy.ra(newind((num)))/24*2*pi; 
%             theta2(num,:) = galaxy.ra(newind((num))); 
%             phi(num,:) = galaxy.dec(newind((num)))*pi/180; 
%             dist(num,:) = galaxy.d(newind((num))); 
%             disterr(num,:) = galaxy.derr(newind((num))); 
%         end 
 
% djit = -1 + (1-(-1)).*rand(newamt,1); 
% dist = dist + djit; 
 
%angles for compute antenna response 
computetheta = phi*(-1)+(pi/2); 
computephi = theta-pi; 



 
%generate random sky position (theta and phi) 
% theta = galaxy.dec(1:10000)*pi/180*(-1)+(pi/2); 
% phi = galaxy.ra(1:10000)/24*2*pi-pi; 
% skypos = [phi,theta]; 
 
%generate random polarization angle in degrees 
pol = (pi/2)*rand(newamt,1); 
 
%make parameter matrix 
% param = [skypos,pol]; 
 
%add distance to earth in units of mpc to parameter matrix 
% param(:,4) = galaxy.d(1:10000); 
 
%add inclination angle in degrees to parameter matrix 
inc = acos(2*rand(newamt,1)-1); 
 
%generate phic 
phic = 2*pi*rand(newamt,1); 
 
% generate tc 
lambda = 12; %avg coalescence in months 
tc = poissrnd(lambda,newamt,1); 
%avg number of coalescences per year 
avg = sum(tc) /(newamt*12); 
rate = avg/((4/3)*pi*max(dist)^3); 
 
%define frequency 
f0 = 70; 
 
%define lower and upper boundaries of integral 
intlow = 10; 
intup = 4000; 
 
%define mass one and mass two 
lowerlim = 3; 
upperlim = 15; 
mass1 = (lowerlim + (upperlim-lowerlim).*rand(newamt,1)); 
mass2 = (lowerlim + (upperlim-lowerlim).*rand(newamt,1)); 
m1 = mass1.*1.9891e30; 
m2 = mass2.*1.9891e30; 
 
%empty arrays for detectors and integrals 
det1 = []; 
det2 = []; 
det3 = []; 
det4 = []; 
det5 = []; 
det6 = []; 
 
q1 = []; 
q2 = []; 
q3 = []; 
q4 = []; 
q5 = []; 
q6 = []; 
 
%switch for configuration 
switch config 
     
    case 'initial' 
        detnum = 3; 
        det = 'Virgo'; 



        %         for z = 1:newamt 
        %             r(z,1) = horizdist(det,mass1(z,1),mass2(z,1)); 
        %         end 
        det1 = 'LHO'; 
        det2 = 'LLO'; 
        det3 = 'V'; 
        %ligo 
        fun1 = @(x) 1./( (x).^(7/3).* 9.*(1e-46).*( (4.49.*(x./f0)).^(-56) + 
0.16.*(x./f0).^(-4.52) + 0.52 + 0.32.*(x./f0).^2 )); 
         
        %virgo 
        fun2 = @(x) 1./( (x).^(7/3).* (3.2e-46 .* (7.8.*(x./500)).^-5 + 2.8.*(x./500).^-1 + 
0.63 + (x./500).^2)); 
         
        %integrate 
        q1 = integral(fun1,intlow,intup); 
        q2 = integral(fun1,intlow,intup); 
        q3 = integral(fun1,intlow,intup); 
         
    case 'enchanced' 
        detnum = 3; 
         
    case 'advanced' 
        detnum = 3; 
        det = 'aVirgo'; 
        %         for z = 1:newamt 
        %             r(z,1) = horizdist(det,mass1(z,1),mass2(z,1)); 
        %         end 
        det1 = 'LHO'; 
        det2 = 'LLO'; 
        det3 = 'V'; 
         
        %aligo 
        fun1 = @(x)1./( (x).^(7/3).*1.35e-50 .* x .* ( 60000.*(x./10).^(-30) + 
5.*(x./50).^(-6) ... 
            + 1.07.*(x./100).^(-3.25) + 3.7.*(x./200).^(-1.25) ... 
            + 0.9.*(x./300).^(-0.08) + 0.85.*(x./1000).^(0.8) ... 
            + 0.53.*(x./2000).^(3) )); 
         
        %avirgo 
        fun2 = @(x)1./( (x).^(7/3).* ( 1.259e-24 .* (0.07.*exp(-0.142-
1.437.*(log10(x./300))+0.407.*(log10(x./300)).^2)+3.10.*exp(-0.466-1.043.*(log10(x./300))-
0.548.*(log10(x./300)).^2)+0.40.*exp(-0.304+2.896.*(log10(x./300))-
0.293.*(log10(x./300)).^2)+0.09.*exp(1.466+3.722.*(log10(x./300))-
0.984.*(log10(x./300)).^2))).^2); 
         
        q1 = integral(fun1,intlow,intup); 
        q2 = integral(fun1,intlow,intup); 
        q3 = integral(fun2,intlow,intup); 
         
    case 'advanced/india' 
        detnum = 4; 
        det = 'aVirgo'; 
        %         for z = 1:newamt 
        %             r(z,1) = horizdist(det,mass1(z,1),mass2(z,1)); 
        %         end 
        det1 = 'LHO'; 
        det2 = 'LLO'; 
        det3 = 'V'; 
        det4 = 'LIO'; 
         
        %aligo 
        fun1 = @(x)1./( (x).^(7/3).*1.35e-50 .* x .* ( 60000.*(x./10).^(-30) + 
5.*(x./50).^(-6) ... 



            + 1.07.*(x./100).^(-3.25) + 3.7.*(x./200).^(-1.25) ... 
            + 0.9.*(x./300).^(-0.08) + 0.85.*(x./1000).^(0.8) ... 
            + 0.53.*(x./2000).^(3) )); 
         
        %avirgo 
        fun2 = @(x)1./( (x).^(7/3).* ( 1.259e-24 .* (0.07.*exp(-0.142-
1.437.*(log10(x./300))+0.407.*(log10(x./300)).^2)+3.10.*exp(-0.466-1.043.*(log10(x./300))-
0.548.*(log10(x./300)).^2)+0.40.*exp(-0.304+2.896.*(log10(x./300))-
0.293.*(log10(x./300)).^2)+0.09.*exp(1.466+3.722.*(log10(x./300))-
0.984.*(log10(x./300)).^2))).^2); 
         
        q1 = integral(fun1,intlow,intup); 
        q2 = integral(fun1,intlow,intup); 
        q3 = integral(fun2,intlow,intup); 
        q4 = integral(fun1,intlow,intup); 
         
    case 'et' 
        detnum = 1; 
        det = 'ETB'; 
        %         for z = 1:newamt 
        %             r(z,1) = horizdist(det,mass1(z,1),mass2(z,1)); 
        %         end 
        det1 = 'ET1'; 
         
        p1 = -4.05049; 
        p2 = -0.687263; 
        a0 = 185.623; 
        b0 = 232.565; 
        b1 = 31.1777; 
        b2 = -64.7178; 
        b3 = 52.242; 
        b4 = -42.1643; 
        b5 = 10.1708; 
        b6 = 11.5317; 
        c1 = 13.5793; 
        c2 = -36.4586; 
        c3 = 18.5625; 
        c4 = 27.4297; 
        S0 = 1.449936*10^-52; 
         
        fun = @(x)1./( (x).^(7/3).*S0.*((x./200).^p1 + a0.*(x./200).^p2 + b0 .* ... 
            ( 1. + b1.*(x./200) + b2.*(x./200).^2 + b3.*(x./200).^3 + b4.*(x./200).^4 + 
b5.*(x./200).^5 + b6.*(x./200).^6 ) ... 
            ./ (1. + c1.*(x./200) + c2.*(x./200).^2 + c3.*(x./200).^3 + c4.*(x./200).^4) )); 
         
        q1 = integral(fun,intlow,intup); 
         
    case 'et and advanced' 
        detnum = 5; 
        det = 'aVirgo'; 
        %         for z = 1:newamt 
        %             r(z,1) = horizdist(det,mass1(z,1),mass2(z,1)); 
        %         end 
        det1 = 'LHO'; 
        det2 = 'LLO'; 
        det3 = 'V'; 
        det4 = 'LIO'; 
        det5 = 'ET1'; 
         
        %aligo 
        fun1 = @(x)1./( (x).^(7/3).*1.35e-50 .* x .* ( 60000.*(x./10).^(-30) + 
5.*(x./50).^(-6) ... 
            + 1.07.*(x./100).^(-3.25) + 3.7.*(x./200).^(-1.25) ... 
            + 0.9.*(x./300).^(-0.08) + 0.85.*(x./1000).^(0.8) ... 



            + 0.53.*(x./2000).^(3) )); 
         
        %avirgo 
        fun2 = @(x)1./( (x).^(7/3).* ( 1.259e-24 .* (0.07.*exp(-0.142-
1.437.*(log10(x./300))+0.407.*(log10(x./300)).^2)+3.10.*exp(-0.466-1.043.*(log10(x./300))-
0.548.*(log10(x./300)).^2)+0.40.*exp(-0.304+2.896.*(log10(x./300))-
0.293.*(log10(x./300)).^2)+0.09.*exp(1.466+3.722.*(log10(x./300))-
0.984.*(log10(x./300)).^2))).^2); 
         
        %et 
        p1 = -4.05049; 
        p2 = -0.687263; 
        a0 = 185.623; 
        b0 = 232.565; 
        b1 = 31.1777; 
        b2 = -64.7178; 
        b3 = 52.242; 
        b4 = -42.1643; 
        b5 = 10.1708; 
        b6 = 11.5317; 
        c1 = 13.5793; 
        c2 = -36.4586; 
        c3 = 18.5625; 
        c4 = 27.4297; 
        S0 = 1.449936*10^-52; 
         
        fun3 = @(x)1./( (x).^(7/3).*S0.*((x./200).^p1 + a0.*(x./200).^p2 + b0 .* ... 
            ( 1. + b1.*(x./200) + b2.*(x./200).^2 + b3.*(x./200).^3 + b4.*(x./200).^4 + 
b5.*(x./200).^5 + b6.*(x./200).^6 ) ... 
            ./ (1. + c1.*(x./200) + c2.*(x./200).^2 + c3.*(x./200).^3 + c4.*(x./200).^4) )); 
         
        q1 = integral(fun1,intlow,intup); 
        q2 = integral(fun1,intlow,intup); 
        q3 = integral(fun2,intlow,intup); 
        q4 = integral(fun1,intlow,intup); 
        q5 = integral(fun3,intlow,intup); 
         
    case 'et/advanced/kagra' 
        detnum = 6; 
        det = 'aVirgo'; 
        %         for z = 1:newamt 
        %             r(z,1) = horizdist(det,mass1(z,1),mass2(z,1)); 
        %         end 
        det1 = 'LHO'; 
        det2 = 'LLO'; 
        det3 = 'V'; 
        det4 = 'LIO'; 
        det5 = 'K'; 
        det6 = 'ET1'; 
         
        %aligo 
        fun1 = @(x)1./( (x).^(7/3).*1.35e-50 .* x .* ( 60000.*(x./10).^(-30) + 
5.*(x./50).^(-6) ... 
            + 1.07.*(x./100).^(-3.25) + 3.7.*(x./200).^(-1.25) ... 
            + 0.9.*(x./300).^(-0.08) + 0.85.*(x./1000).^(0.8) ... 
            + 0.53.*(x./2000).^(3) )); 
         
        %avirgo 
        fun2 = @(x)1./( (x).^(7/3).* ( 1.259e-24 .* (0.07.*exp(-0.142-
1.437.*(log10(x./300))+0.407.*(log10(x./300)).^2)+3.10.*exp(-0.466-1.043.*(log10(x./300))-
0.548.*(log10(x./300)).^2)+0.40.*exp(-0.304+2.896.*(log10(x./300))-
0.293.*(log10(x./300)).^2)+0.09.*exp(1.466+3.722.*(log10(x./300))-
0.984.*(log10(x./300)).^2))).^2); 
         



        %kagra 
        fun3 = @(x)1./( (x).^(7/3).* ( 6.499e-25 .* (0.72e-9.*exp(-1.43-
9.88.*(log10(x./100))-0.23.*(log10(x./100)).^2)+1.17.*exp(0.14-3.10.*(log10(x./100))-
0.26.*(log10(x./100)).^2)+1.70.*exp(0.14+1.09.*(log10(x./100))-
0.013.*(log10(x./100)).^2)+1.25.*exp(0.071+2.83.*(log10(x./100))-
4.91.*(log10(x./100)).^2))).^2); 
         
        %et 
        p1 = -4.05049; 
        p2 = -0.687263; 
        a0 = 185.623; 
        b0 = 232.565; 
        b1 = 31.1777; 
        b2 = -64.7178; 
        b3 = 52.242; 
        b4 = -42.1643; 
        b5 = 10.1708; 
        b6 = 11.5317; 
        c1 = 13.5793; 
        c2 = -36.4586; 
        c3 = 18.5625; 
        c4 = 27.4297; 
        S0 = 1.449936*10^-52; 
         
        fun4 = @(x)1./( (x).^(7/3).*S0.*((x./200).^p1 + a0.*(x./200).^p2 + b0 .* ... 
            ( 1. + b1.*(x./200) + b2.*(x./200).^2 + b3.*(x./200).^3 + b4.*(x./200).^4 + 
b5.*(x./200).^5 + b6.*(x./200).^6 ) ... 
            ./ (1. + c1.*(x./200) + c2.*(x./200).^2 + c3.*(x./200).^3 + c4.*(x./200).^4) )); 
         
        q1 = integral(fun1,intlow,intup); 
        q2 = integral(fun1,intlow,intup); 
        q3 = integral(fun2,intlow,intup); 
        q4 = integral(fun1,intlow,intup); 
        q5 = integral(fun3,intlow,intup); 
        q6 = integral(fun4,intlow,intup); 
end 
 
%add fplus and fcross 
[Fp,Fc] = antenna(detnum,det1,det2,det3,det4,det5,det6,pol,computephi,computetheta,newamt); 
 
%solve for chirp mass 
chirp = ((m1.*m2).^(3/5))./((m1+m2).^(1/5)); 
 
%find SNR for all detectors 
[signoise] = SNR(detnum,chirp,inc,dist,Fp,Fc,newamt,q1,q2,q3,q4,q5,q6); 
 
%calculate last column of trigger matrix 
endtrig = 10+detnum; 
 
%find SNR >= 5 in two detectors 
if detnum > 1 
    [search,junk] = find(signoise>=5); 
    search = unique(search); 
    for k = 1:length(search) 
        search2 = find(signoise(search(k),:)>=5); 
        if length(search2)>=2 
            triggers(k,1) = phi2(search(k),1); 
            triggers(k,2) = theta2(search(k),1); 
            triggers(k,3) = dist(search(k),1); 
            triggers(k,4) = chirp(search(k),1); 
            triggers(k,5) = mass1(search(k),1); 
            triggers(k,6) = mass2(search(k),1); 
            triggers(k,7) = inc(search(k),1); 
            triggers(k,8) = pol(search(k),1); 



            triggers(k,9) = Fp(search(k),1); 
            triggers(k,10) = Fc(search(k),1); 
            triggers(k,11:endtrig) = signoise(search(k),:); 
        end 
    end 
     
    %clear out zeros 
    [rows,col]=find(triggers == 0); 
    u = unique(rows); 
    triggers(u,:) = []; 
     
    %create final matrix 
    final = []; 
     
    [row,col] = size(triggers); 
    %find SNR quadrature sum >= 12 
    for a = 1:row 
        if sqrt(triggers(a,11)^2 + triggers(a,12)^2 + triggers(a,13)^2+ triggers(a,14)^2+ 
triggers(a,15)^2+ triggers(a,16)^2) >= 12 
            final(a,1:col) = triggers(a,1:col); 
        end 
    end 
     
    %clear out zeros 
    [rows,col]=find(final == 0); 
    u = unique(rows); 
    final(u,:) = []; 
     
    %find new parameters of found signals for all detectors 
    %create ini file 
    %use 'jitterval2' for errors decreased by factor of 10 
    fileName = 'jitterval'; 
    %     inifile(fileName,'new'); 
     
    %read values from ini file 
    [keys,sections,subsections] = inifile(fileName,'readall'); 
     
    %find system snr 
    [r,c] = size(final); 
    totalsnr = sqrt( (final(:,11).^2) + (final(:,12).^2) + (final(:,13).^2) + 
(final(:,14).^2) + (final(:,15).^2)+(final(:,16).^2) ); 
     
    %Here we add the noise to all parameters 
    %total mass 
    %get current values 
    totmass = final(:,5) + final(:,6); 
    %get factor that snr is divided by 
    fact = str2num(keys{1,4}); 
    %calculate array of jitter values using randn for gaussian 
    totmassjit =  -(fact./totalsnr) + ((fact./totalsnr)-(-(fact./totalsnr))).*randn(r,1); 
    %jitter old values 
    totmass = totmass + totmassjit; 
     
    %mass ratio 
    massrat = final(:,5)./final(:,6); 
    fact = str2num(keys{2,4}); 
    ratmassjit =  -(fact./totalsnr) + ((fact./totalsnr)-(-(fact./totalsnr))).*randn(r,1); 
    massrat = massrat + ratmassjit; 
     
    %right ascension 
    ra = final(:,2); 
    fact = str2num(keys{3,4}); 
    rajit =  -(fact./totalsnr) + ((fact./totalsnr)-(-(fact./totalsnr))).*randn(r,1); 
    ra = (ra + rajit)*24/360; 



     
    %declination 
    dec = final(:,1); 
    fact = str2num(keys{3,4}); 
    decjit =  -(fact./totalsnr) + ((fact./totalsnr)-(-(fact./totalsnr))).*randn(r,1); 
    dec = dec + decjit; 
     
    %distance 
    newdist = final(:,3); 
    fact = str2num(keys{4,4}); 
    distjit =  -(fact./totalsnr) + ((fact./totalsnr)-(-(fact./totalsnr))).*randn(r,1); 
    newdist = newdist + distjit; 
     
    %inclination 
    newinc = final(:,7)*180/pi; 
    fact = str2num(keys{5,4}); 
    incjit =  -(fact./totalsnr) + ((fact./totalsnr)-(-(fact./totalsnr))).*randn(r,1); 
    newinc = newinc + incjit; 
     
    %polarization 
    newpol = final(:,8)*180/pi; 
    fact = str2num(keys{6,4}); 
    poljit =  -(fact./totalsnr) + ((fact./totalsnr)-(-(fact./totalsnr))).*randn(r,1); 
    newpol = newpol + poljit; 
     
    %snr 
    rnd = -1 + (1-(-1)).*rand(r,1); 
    %create random set of numbers that are either -1 or 1 
    find(rnd<0); 
    rnd(ans) = -1; 
    find(rnd>0); 
    rnd(ans) = 1; 
    %use chi square function of snr at 2 dof to get jitter 
    %values 
    snrjit = (chi2pdf(totalsnr,2)).*rnd; 
    %jitter snr values 
    totalsnr = totalsnr + snrjit; 
     
    %error box 
     
    %find indices of distance, ra, and dec that are within correct ranges 
    for i = 1:r 
        distind{:,i} = find(galaxy.d < ((newdist(i))+(abs(distjit(i)))) & galaxy.d > 
((newdist(i))-(abs(distjit(i))))); 
        raind{:,i} = find(galaxy.ra < ((ra(i))+(abs(rajit(i)))) & galaxy.ra > ((ra(i))-
(abs(rajit(i))))); 
        decind{:,i} = find(galaxy.dec < ((dec(i))+(abs(decjit(i)))) & galaxy.dec > 
((dec(i))-(abs(decjit(i))))); 
    end 
     
    %find matching indices of ra and dec, then also distance 
    for j = 1:r 
        comang{1,j} = intersect(raind{j},decind{j}); 
        galind{1,j} = intersect(comang{1,j},distind{j}); 
    end 
     
    %create matrix of found galaxies 
    gal = []; 
    for i = 1:r 
        newgal = galind{i}; 
        newgal(:,2) = newdist(i,1); 
        gal = [gal;newgal]; 
         
    end 



     
    gallength = length(gal); 
     
    %first col is galaxy index, second col is jittered distance of 
    %corresponding signal, third col is actual distance, fourth col is 
    %redshift, fifth col is old hubble value, sixth col is new (better) hubble value 
    gal(:,3) = galaxy.d(gal(:,1)); 
    gal(:,4) = galred(gal(:,1)); 
    gal(:,5) = hub(gal(:,1)); 
    gal(:,6) = hubble(gal,gallength); 
     
    %plot histogram of hubble values 
    hist(gal(:,6)); 
     
    %calculate effective distance 
    effectdist = newdist./(((1/4).*(final(:,9).^2).*(1+ (cos(newinc).*cos(newinc))).^2 + 
((final(:,10)).^2).*(cos(newinc).*cos(newinc))).^(1/2)); 
     
    %plot all signals, signals that pass first test, and signals that pass 
    %second 
    %     scatter(computephi(:,1),computetheta(:,1),'g','.') 
    %     hold 
    %     scatter(triggers(:,1),triggers(:,2),'r','.') 
    %     scatter(final(:,1),final(:,2),'b','.') 
     
    %plot ra and dec, vary color by distance 
    %     scatter(final(:,1),final(:,2), 50, final(:,3),'.'); 
    %     figure(2); 
    %     scatter(final(:,1),final(:,2), 50, final(:,4),'.'); 
     
    %plot 6 patches of sky position for different bins of distances 
    %      for x = 125:125:750 
    %         found = []; 
    %         found = find(dist < x & dist > x-125); 
    %         figure(x/125); 
    %         plot(theta(found),phi(found),'o'); 
    %     end 
     
    %     data = []; 
    %     %plot number of signals versus distance in bins 
    %     for x = min(dist):50:max(dist) 
    %         found = []; 
    %         found = find(dist < x & dist > x-50); 
    %         datanew = [log(x),log(length(found))]; 
    %         data = [data;datanew]; 
    %     end 
    % 
    %     TF = isinf(data); 
    %     [r,c] = find(TF ==1); 
    %     data(r,:) = []; 
    % 
    %     plot(data(:,1),data(:,2),'o'); 
    %     hold on 
    %     lsline 
    %     title('Log Plot of Number Density'); 
    %     xlabel('Distance'); 
    %     ylabel('Number of Galaxies'); 
    %     p = polyfit(data(:,1),data(:,2),1); 
    %     yfit = polyval(p,data(:,1)); 
    %     yresid = data(:,2) - yfit; 
    %     SSresid = sum(yresid.^2); 
    %     SStotal = (length(data(:,2))-1) * var(data(:,2)); 
    %     rsq = 1 - SSresid/SStotal; 
    %     h = chi2gof(data(:,1)); 



    %     e = std(data(:,1))*ones(size(data(:,1))); 
    %     eb = errorbar(data(:,1),data(:,2),e); 
    %     set(eb(1),'Linestyle','none','Marker','s','MarkerEdgeColor','k'); 
    % 
    %     %plot sky position with different colors for different distance bins 
    %     data2 = []; 
    %     figure(2); 
    %     for x = 1:6 
    %         found = []; 
    %         found = find(dist < x*125 & dist > x*125-125); 
    %         if x ==1 
    %             scatter(theta2(found),sin(phi(found)),50,'r','o'); 
    %             title('Sky Positions of Various Sets of Distances'); 
    %             xlabel('Right Ascension (hrs)'); 
    %             ylabel('Sine of Declination (rad)'); 
    %             legend('Distance 0-125'); 
    %             hold on 
    %         elseif x ==2 
    %             scatter(theta2(found),sin(phi(found)),50,'g','o'); 
    %             legend('Distance 126-250'); 
    %         elseif x ==3 
    %             scatter(theta2(found),sin(phi(found)),50,'b','o'); 
    %             legend('Distance 251-375'); 
    %         elseif x ==4 
    %             scatter(theta2(found),sin(phi(found)),50,'c','o'); 
    %             legend('Distance 376-500'); 
    %         elseif x ==5 
    %             scatter(theta2(found),sin(phi(found)),50,'m','o'); 
    %             legend('Distance 501-625'); 
    %         elseif x ==6 
    %             scatter(theta2(found),sin(phi(found)),50,'k','o'); 
    %             legend('Distance 0-125','Distance 126-250','Distance 251-375','Distance 
376-500','Distance 501-625','Distance 626-750'); 
    %         end 
    % 
    %     end 
    % 
    % 
end 
 
 
 
%optional test for timing error 
% %detector list 
% detectors = {'V';'L';'H'}; 
% 
% %compute delay 
% delay = computeTimeShifts(detectors,param(:,1:2)); 
% 
% %bandwidths 
% bandwidthV = 188.8889; 
% bandwidthL = 94.9164; 
% 
% %find timing error for virgo 
% SNR=8; 
% dtV=(2*pi*bandwidthV*SNR)^-1; 
% dtV = dtV*1.2; %-- adds a 20% timing error 
% %timingErrorV = dtV * ones(size(detectors)); 
% % ytime = (2*rand(3,1)-1).*0.2; 
% % timingErrorV = dtV+dtV.*ytime; 
% 
% %find timing error for ligo 
% dtL=(2*pi*bandwidthL*SNR)^-1; 
% dtL = dtL*1.2; %-- adds a 20% timing error 



% % timingErrorL = dtL * ones(size(detectors)); 
% % timingErrorL = timingErrorL+timingErrorL.*ytime; 
% 
% %find final timing errors for all detectors 
% alltimingErrorV = repmat(dtV,10000,1)./param(:,14); 
% alltimingErrorL = repmat(dtL,10000,1)./param(:,13); 
% alltimingErrorH = repmat(dtL,10000,1)./param(:,12); 
% 
% %combine timing errors into one matrix 
% timingerrors = [alltimingErrorV,alltimingErrorL,alltimingErrorH]; %VLH 
% 
% %find arrival times 
% arrivaltimes = delay + randn(10000,3) .* timingerrors; %VLH 
% 
% %test to see if times match 
% pass = find(timecoincidence(arrivaltimes,detectors,timingerrors,3)); 
 

Appendix B – Antenna Pattern Function 
 

function [Fp,Fc] = 
antenna(detnum,det1,det2,det3,det4,det5,det6,pol,computephi,computetheta,newamt) 
 
%this function calculates the antenna patterns for up to six detectors 
%by Teresa Symons 2013 
 
%detector 1 
if detnum == 1 || detnum == 2|| detnum == 3|| detnum == 4|| detnum == 5|| detnum == 6 
    for i = 1:newamt 
        [Fp1(i,:), Fc1(i,:), Fb] = 
ComputeAntennaResponse(computephi(i,1),computetheta(i,1),pol(i,1),det1); 
    end 
    Fp = Fp1; 
    Fc = Fc1; 
end 
 
%detector 2 
if detnum ==2|| detnum == 3|| detnum == 4|| detnum == 5|| detnum == 6 
    for i = 1:newamt 
        [Fp2(i,:), Fc2(i,:), Fb] = 
ComputeAntennaResponse(computephi(i,1),computetheta(i,1),pol(i,1),det2); 
    end 
    Fp = [Fp1,Fp2]; 
    Fc = [Fc1,Fc2]; 
end 
 
%detector 3 
if detnum == 3|| detnum == 4|| detnum == 5|| detnum == 6 
    for i = 1:newamt 
        [Fp3(i,:), Fc3(i,:), Fb] = 
ComputeAntennaResponse(computephi(i,1),computetheta(i,1),pol(i,1),det3); 
    end 
    Fp = [Fp1,Fp2,Fp3]; 
    Fc = [Fc1,Fc2,Fc3]; 
end 
 
%detector 4 
if detnum == 4|| detnum == 5|| detnum == 6 
    for i = 1:newamt 
        [Fp4(i,:), Fc4(i,:), Fb] = 
ComputeAntennaResponse(computephi(i,1),computetheta(i,1),pol(i,1),det4); 
    end 
    Fp = [Fp1,Fp2,Fp3,Fp4]; 
    Fc = [Fc1,Fc2,Fc3,Fc4]; 



end 
 
%detector 5 
if detnum == 5|| detnum == 6 
    for i = 1:newamt 
        [Fp5(i,:), Fc5(i,:), Fb] = 
ComputeAntennaResponse(computephi(i,1),computetheta(i,1),pol(i,1),det5); 
    end 
    Fp = [Fp1,Fp2,Fp3,Fp4,Fp5]; 
    Fc = [Fc1,Fc2,Fc3,Fc4,Fc5]; 
end 
 
%detector 6 
if detnum == 6 
    for i = 1:newamt 
        [Fp6(i,:), Fc6(i,:), Fb] = 
ComputeAntennaResponse(computephi(i,1),computetheta(i,1),pol(i,1),det6); 
    end 
    Fp = [Fp1,Fp2,Fp3,Fp4,Fp5,Fp6]; 
    Fc = [Fc1,Fc2,Fc3,Fc4,Fc5,Fc6]; 
end 
 
end 
 

Appendix C – SNR Function 
 

function [signoise] = SNR(detnum,chirp,inc,dist,Fp,Fc,newamt,q1,q2,q3,q4,q5,q6) 
 
%this function calculates the SNR for up to six detectors 
%by Teresa Symons 2013 
 
%detector 1 
if detnum == 1 || detnum == 2|| detnum == 3|| detnum == 4|| detnum == 5|| detnum == 6 
    for j = 1:newamt 
        signoise(j,1) = (((6.67384e-
11^(5/6))/(299792458^(3/2)))*((5/(24*pi^(4/3)))^(1/2))*((chirp(j,1)^(5/6))/(dist(j,1)*100000
0*3.08567758e16))*(((Fp(j,1)^2)*((1+(cos(inc(j,1))*cos(inc(j,1)))))^2)+4*(((Fc(j,1))^2)*(cos
(inc(j,1))*cos(inc(j,1)))))^(1/2)*((q1)^(1/2))); 
    end 
%     sjit =  -1 + (1-(-1)).*randn(newamt,1); 
%     signoise(:,1) = signoise(:,1) + sjit; 
end 
 
%detector 2 
if detnum ==2|| detnum == 3|| detnum == 4|| detnum == 5|| detnum == 6 
    for j = 1:newamt 
        signoise(j,2) = (((6.67384e-
11^(5/6))/(299792458^(3/2)))*((5/(24*pi^(4/3)))^(1/2))*((chirp(j,1)^(5/6))/(dist(j,1)*100000
0*3.08567758e16))*(((Fp(j,2)^2)*((1+(cos(inc(j,1))*cos(inc(j,1)))))^2)+4*(((Fc(j,2))^2)*(cos
(inc(j,1))*cos(inc(j,1)))))^(1/2)*((q2)^(1/2))); 
    end 
%     sjit =  -1 + (1-(-1)).*randn(newamt,1); 
%     signoise(:,2) = signoise(:,2) + sjit; 
end 
 
%detector 3 
if detnum == 3|| detnum == 4|| detnum == 5|| detnum == 6 
    for j = 1:newamt 
        signoise(j,3) = (((6.67384e-
11^(5/6))/(299792458^(3/2)))*((5/(24*pi^(4/3)))^(1/2))*((chirp(j,1)^(5/6))/(dist(j,1)*100000
0*3.08567758e16))*(((Fp(j,3)^2)*((1+(cos(inc(j,1))*cos(inc(j,1)))))^2)+4*(((Fc(j,3))^2)*(cos
(inc(j,1))*cos(inc(j,1)))))^(1/2)*((q3)^(1/2))); 
    end 
%     sjit =  -1 + (1-(-1)).*randn(newamt,1); 



%     signoise(:,3) = signoise(:,3) + sjit; 
end 
 
%detector 4 
if detnum == 4|| detnum == 5|| detnum == 6 
    for j = 1:newamt 
        signoise(j,4) = (((6.67384e-
11^(5/6))/(299792458^(3/2)))*((5/(24*pi^(4/3)))^(1/2))*((chirp(j,1)^(5/6))/(dist(j,1)*100000
0*3.08567758e16))*(((Fp(j,4)^2)*((1+(cos(inc(j,1))*cos(inc(j,1)))))^2)+4*(((Fc(j,4))^2)*(cos
(inc(j,1))*cos(inc(j,1)))))^(1/2)*((q4)^(1/2))); 
    end 
%     sjit =  -1 + (1-(-1)).*randn(newamt,1); 
%     signoise(:,4) = signoise(:,4) + sjit; 
end 
 
%detector 5 
if detnum == 5|| detnum == 6 
    for j = 1:newamt 
        signoise(j,5) = (((6.67384e-
11^(5/6))/(299792458^(3/2)))*((5/(24*pi^(4/3)))^(1/2))*((chirp(j,1)^(5/6))/(dist(j,1)*100000
0*3.08567758e16))*(((Fp(j,5)^2)*((1+(cos(inc(j,1))*cos(inc(j,1)))))^2)+4*(((Fc(j,5))^2)*(cos
(inc(j,1))*cos(inc(j,1)))))^(1/2)*((q5)^(1/2))); 
    end 
%     sjit =  -1 + (1-(-1)).*randn(newamt,1); 
%     signoise(:,5) = signoise(:,5) + sjit; 
end 
 
%detector 6 
if detnum == 6 
    for j = 1:newamt 
        signoise(j,6) = (((6.67384e-
11^(5/6))/(299792458^(3/2)))*((5/(24*pi^(4/3)))^(1/2))*((chirp(j,1)^(5/6))/(dist(j,1)*100000
0*3.08567758e16))*(((Fp(j,6)^2)*((1+(cos(inc(j,1))*cos(inc(j,1)))))^2)+4*(((Fc(j,6))^2)*(cos
(inc(j,1))*cos(inc(j,1)))))^(1/2)*((q6)^(1/2))); 
    end 
%     sjit =  -1 + (1-(-1)).*randn(newamt,1); 
%     signoise(:,6) = signoise(:,6) + sjit; 
end 
 
end 
 

Appendix D – Hubble Constant Function 
 

function H0 = hubble(gal,gallength); 
 
%This function calculates the Hubble parameter using the redshift and the 
%distance 
%by Teresa Symons 2013 
 
fun = @(x)1./((0.24*(1+x).^3 + 0.76).^(1/2)); 
H0 = []; 
%for each found galaxy integrate function from 0 to z 
for i = 1:gallength 
        hubint = integral(fun,0,gal(i,4)); 
        %hub value is c * 1+z / d*int 
        newhub = ((299792.458 * (1+gal(i,4)))/ gal(i,2))*hubint; 
        H0 = [H0;newhub]; 
end 
         

 
 


