
Measuring Dark Energy with Binary Black Holes

Teresa Symons
Embry-Riddle Aeronautical University,

Daytona Beach, FL 32114 and
Cardiff University, Cardiff, CF24 3AA, UK

(Dated: August 14, 2013)

Abstract: We explore the information about cosmology that can be gleaned by simulating
gravitational wave signals from binary black hole coalescence events. Using a galaxy catalog,
we select a certain preferential set of galaxies to use as injections for binary black hole
merger events. After generating various parameters randomly, we set up our network of
detectors. We calculate the antenna response patterns and signal-to-noise ratio for each signal
and each detector, allowing us to determine which signals would be detectable by which
detectors in the network. After making our mock detections, we discern which original
galaxies the signals could possibly come from by adding a certain amount of noise to the
original parameters and searching within an error box on the sky for possible galaxy matches.
We then use information about those galaxies to calculate their redshift. Then, we calculate
the Hubble constant for each galaxy and use a histogram to determine the true value. After
some experimentation with different approximations for the Hubble constant, we arrived at
the value of 69.56 km/s*Mpc, given a theoretical value of 70 km/s*Mpc.

I. INTRODUCTION

Gravitational waves are theorized to be ripples in
space-time that are caused by moving large masses.
There are multiple likely sources of these waves,
including the gravitational collapse of stars such as
those that produce supernovae or gamma-ray bursts,
gravitational wave pulsars such as stars with non-
symmetric deformations, merging binary systems, and
the stochastic background, which is the random
gravitational wave field throughout the universe. This
project deals primarily with merging binary systems
as a gravitational wave source. These can be the
mergers of two neutron stars, a neutron star and a
black hole, or two black holes. Specifically, we will
be dealing with binary black hole coalescence events.
Black holes can create gravitational waves during
inspiral, the period of orbital decrease as the two
black holes grow closer to one another, and also
during ring down, the phase after merging where the
single black hole is distorted in shape. Binary black
hole mergers are theoretically the strongest source of
gravitational waves [4].

Binary black holes are important to this project
because changes in their masses are caused by the
accretion of dark energy. The orbital changes of a
binary system are induced by energy loss from
gravitational radiation. Because binary black holes
radiate gravitational waves with a power proportional
to their masses, these gravitational waves carry
information about dark energy [4]. Dark energy is a
theoretical energy that permeates all of space and

accelerates the expansion of the universe. Its
counterpart, dark matter, is seen by its gravitational
effects on visible matter. In fact, the total mass-energy
of the universe is roughly 4.6% ordinary matter, with
24% dark matter and 71.4% dark energy [6].

Studying gravitational waves can help us to learn
more about general relativity and cosmology.
Cosmologists desire to learn more about the structure
and evolution of the universe. One of the most
important ways to study this is to discover the
densities of the various types of matter in the
universe. The average density of matter in the
universe determines if the universe is closed and
finite, or open and infinite. If the value of the average
density is close to the critical density between the
two, the universe is flat but still infinite. Likewise,
the distribution of dark matter and energy affects if
the universe is expanding or contracting, and how
quickly it is doing either. Simulating gravitational
wave signals not only allows us to develop
algorithms that could be used to calculate the various
cosmological parameters from real gravitational wave
detections, but also gives us a tool to see how various
networks of detectors can help us determine these
crucial matter densities and learn more about the
nature of the universe [6].

II. BACKGROUND

A. Project Overview

In this project, we seek to determine the
cosmological parameters from simulated
gravitational wave signals of binary black hole
mergers. To accomplish this, we use a galaxy catalog
based on the Millennium Simulation to select
galaxies for the black hole coalescence events. We
randomly generate various parameters and create a
mock detector network. Then, we determine which
of the signals would actually be detected, and add
some randomly generated noise to those signals. We
then use that noise to search for galaxies in the
catalog that could be possible sources for the signals,
and then use the redshifts of those galaxies to
determine the cosmological parameters. The main
MATLAB code written for this project is located in
Appendix A. Supplementary, original functions are
included in Appendices B through D.

B. Millennium Simulation

For this project, the galaxy catalog we used is

derived from the Millennium Simulation. This
simulation was performed by the Virgo Consortium
for Cosmological Supercomputer Simulations and is
the largest N-body simulation ever carried out. The
simulation is used to study the evolution of the
universe and structure formation caused by dark
matter [5]. The galaxy catalog was created by Dr.
Laura Nuttall, and contains over 40 million galaxies.
Figure 1 was created by Dr. Nuttall and shows a
three-dimensional mapping of all the galaxies in her
catalog.

C. Network of Detectors

We looked at a specific network of detectors in
order to detect the generated binary black hole
coalescence events. Specifically, we used Advanced
LIGO, including the Hanford, Washington and
Livingston, Louisiana sites, Advanced VIRGO in
Italy, LIGO India, KAGRA in Japan, and the Einstein
Telescope that would be located somewhere in
Europe. Not all of these detectors are up and running
yet, but we used their power spectral densities to
determine their potential detection power.

D. The Einstein Telescope

The Einstein Telescope (ET) is the most important

detector in this project’s network. As a third
generation gravitational wave detector, it would be
more sensitive than the advanced detectors by a factor
of 10 [2]. This increase in sensitivity would give it a
much high signal-to-noise ratio than any of the other
network detectors, allowing for a high detection rate.
It is suspected that the Einstein Telescope would
allow us to better determine the cosmological
parameters. One component of this project is to
examine how well these parameters can be
determined both with and without the Einstein
Telescope included in the detector network. Figure 2
shows an artistic rendering of what the Einstein
Telescope could look like.

E. Cosmological Parameters

This project seeks to determine the parameters that
define the ΛCDM model of the universe, the Λ - Cold
Dark Matter model. This is the currently accepted
model that states the universe has a cosmological
constant and is populated by cold dark matter. The
particular parameter that we find in this project is the
Hubble Constant, !! , which tells us the current Figure'1:'Map'of'galaxy'catalog'(Nuttall)

Figure'2:'The'Einstein'Telescope'(http://www.et@gw.eu/etimages)

expansion rate of the universe. Other important
parameters that could one day be derived from this
work are ΩΛ, the dark energy density, ΩM, the dark
matter density, and w, the dark energy equation of
state [3]. Equation 1 shows the relationship between
these four parameters, where z is redshift and Ωd is
ΩΛ.

! ! =

!!![Ω! 1+ ! ! + Ω! 1+ ! ! !!!]!/!![2] (1)

III. SIGNAL INJECTIONS

A. Galaxy Catalog

The galaxy catalog contains over 40 million

galaxies and is complete to 750 Mpc. For each
galaxy, the sky position (right ascension and
declination) is given. Also given is the luminosity
distance and an error on that value, a number
indicating how spiral or elliptical the galaxy is, and
the luminosity with an error on that value. It would be
computationally impractical to use the entire catalog,
so we have developed a method for randomly
selecting which galaxies to use.

B. Weighted Random Selection

We developed a program to randomly select any
desired number of galaxies to use as binary black
hole coalescence events. For the purpose of this
project, it is assumed that every selected galaxy has a
coalescence event. The program gives preference to
elliptical galaxies over spiral galaxies 60% of the
time, although this percentage is variable. The reason
for this is that elliptical galaxies are older and
therefore have greater chances of having a merger
event. This selection is accomplished by generating a
random number and then checking if that number
falls between 0 and 0.6 or above 0.6. If the number is
below 0.6, an elliptical galaxy will be selected.
Secondly, the program gives a weighted preference to
brighter galaxies by first dividing each luminosity
value by the sum of all values. These values are then
sorted and the cumulative sum of each value and all
previous values is calculated. The program then
selects galaxies with smaller cumulative sums and
greater brightness values. Typically, 1,000 galaxies
were selected for each trial. As many as 10,000 were
selected for longer runs, and as few as 100 were
selected for short trials. One thousand was the
optimal number to get enough detections to use for

the remainder of the program. Figure 3 shows the sky
positions of all selected galaxies in right ascension
versus declination.

The declination of the galaxies ranges from − !
! to !!

radians. Right ascension ranges from 0 to 2! radians.
Figures 4 and 5 illustrate this.

Figure'3:'Sky'positions'of'selected'galaxies

Figure'4:'Distribution'of'declination

Figure'5:'Distribution'of'right'ascension'

The values for luminosity distance were given in the
catalog for each galaxy. They ranged from 0 to 750
Mpc. This is seen in Figure 6.

!
Figure'6:'Distribution'of'distance'

These are all of the parameters for each galaxy that
were included in the catalog. Other parameters are
needed to calculate the detectability of each signal, so
those parameters were randomly generated.

C. Generating Parameters

The inclination angle, which is the angle between

the line-of-sight to a merging binary from Earth and
the angular momentum of the binary, is randomly
generated and uniformly distributed in cosine. It
ranges from 0 to ! radians, as can be seen in Figure
7.

!
Figure'7:'Distribution'of'inclination'angle'

The polarization angle is the orientation of the orbit
of the binary on the sky with respect to the
orientation of the detector. It is also randomly
generated and uniformly distributed between 0 and !!
radians, as is seen in Figure 8.

!
Figure'8:'Distribution'of'polarization'angle'

IV. DETECTIONS

A. Detector Network

After creating our signals, we set up our detector
network. The program is capable of using several
combinations of the following detectors: Initial LIGO
and VIRGO, Advanced LIGO and VIRGO, LIGO
India, KAGRA, and ET. The various cases are: only
initial LIGO and VIRGO; only advanced LIGO and
VIRGO; advanced with LIGO India; only ET;
advanced, India, and ET; and advanced, India, ET,
and KAGRA. Typically, all detectors were used at
once. Each detector in the network has a power
spectral density function.

B. Making Detections

The masses of the black holes were generated

randomly for each galaxy between three and 15 solar
masses, which is what they would be for binary black
hole systems. This is seen in Figures 9 and 10.

!
Figure'9:'Distribution'of'Mass'1'

!
Figure'10:'Distribution'of'Mass'2'

In order to detect the mock signals from each
galaxy, first the F+ and Fx antenna responses were
calculated for each detector and galaxy combination.
Next, the signal-to-noise ratio (SNR) was calculated
for each detector and galaxy combination using
Equation 2, where G is the gravitational constant, C is
the speed of light, M is the chirp mass (a composite
of both masses), dL is the luminosity distance, and ! is
the inclination angle.

!"# =

!!
!
!

!
!
!

!
!"!

!
!

!
! !

!
!

!!
!!! 1 + !(cos !)! ! +

4!!! (cos !)!
!
![!" !

!
!
!! !

!
!]!!!!! ! ! !(2)

The equation also uses the calculated antenna

responses and the power spectral density function for
each detector. After the SNR has been calculated for
each galaxy and each detector, we figure out which
galaxies would actually be detectable by our network.
We search for galaxies that have SNR greater than
five in at least two detectors, and then galaxies that
have a quadrature sum SNR greater than 12. This
allows us to realistically determine which galaxies
would actually be detected in a real scenario. The
typical detection rate using all detectors is about
99.5%, which is expected. This high detection rate is
greatly helped by including ET, because ET typically
produces much higher SNR values than the other
detectors.

C. Adding Noise

After we have made our detections, we add noise to

the parameters for only the detected galaxies. The
purpose of this is to produce an error box that we can
then use to search the catalog for galaxy candidates
for each signal. For most of the parameters, the noise

has Gaussian distribution with various widths for
different parameters. The widths are as follows: 0.01
for the total mass, 0.1 for the mass ratio, 5 degrees for
right ascension and declination, 3 for luminosity
distance, 50 degrees for the inclination angle, and 25
degrees for the polarization angle. All of these widths
are also divided by the system SNR, which is
calculated by squaring all of the SNR values for each
detector for one galaxy, and then taking the square
root of that value. From this point forward, only the
system SNR is used and not individual SNR values
for particular detectors. Noise is also added to the
system SNR with a chi-square distribution. Error
values are randomly generated using the methods and
widths described above, and then randomly added to
or subtracted from all of the original values.

V. LOCATING SIGNALS

A. Reconstructing Error Box

After adding in the noise, we use it to reconstruct

an error box on the sky and then search in that box
for each signal to attempt to figure out which galaxy
in the catalog the signal came from. All galaxies in
each signal’s error box are included as possible
sources. For some signals there are few or no galaxies
found, and for some there are hundreds.

The error box is formed by taking just one detected
signal and its distance, right ascension, and
declination. Then, we search for any galaxies that
have a distance value of the signal distance plus or
minus its noise value. The same is done for right
ascension and declination. This gives us three lists of
galaxies that match the signal’s distance and position
components. By finding galaxies present in all three
lists we develop a master list of potential source
galaxies for each signal. Figure 11 illustrates the error
box concept.

Figure'11:'Error'box

The mark in the center of the diagram is the actual
galaxy that the signal came from, with a line to the
point, Earth, that represents the real distance. The
blue box includes the distance plus the noise and the
distance minus the noise, and so includes the
surrounding galaxies that will be found in the error
box search.

B. Finding Hubble Parameter

After generating a list of potential sources for each

signal, we can proceed with calculating the
cosmological constants. From this point forward, we
no longer use the list of signals we detected, but only
the list of potential source galaxies. In a realistic
scenario, gravitational waves would be detected and
then the source galaxies for the signals would be
determined, so we use only that data.

First, we calculated the redshift for each galaxy
using the luminosity distance from the catalog, the
desired dark matter percentage, 0.24, and a theoretical
value of !!, 70. Then, using the redshift value for
each galaxy, the luminosity distance from the catalog,
and the speed of light, we calculated the Hubble
parameter using the approximation where redshift is
much less than 1. The formula used is seen in
Equation 3.

!! = !∗!
!!
!!"#!! ≪ 1![2] (3)

Then we created a histogram of all the !! values

for all of the source galaxies, with the hope that it
would peak at the true value.

VI. RESULTS

A. First Results and Issues

Our first histograms all seemed to peak around 62.5

km/s*Mpc. This was slightly disappointing given that
our target value was 70 km/s*Mpc. In addition, our
histograms were all one-sided, with only a right side.
Figure 12 shows an example of this result.

!
Figure'12:'One@sided'histogram'for'Hubble'Parameter'

We attempted multiple changes to try to get a more
accurate value.

B. Changing Sigma Values

First, we tried decreasing the noise errors by a

factor of 10. This proved to have no effect on the
histogram’s shape or the value of the Hubble
constant. Next, we tried increasing the sigma values
for the error box, essentially doubling it in size and
then tripling it. This drastically increased the number
of potential source galaxies, on the supposition that
adding more values of the Hubble constant would
help the real value to stand out more accurately.
Figures 13 and 14 show these results.

!
Figure'13:'Doubled'error'box'

!

!
Figure'14:'Tripled'error'box'

These histograms continue to show a value for the
Hubble constant of 62.5 km/s*Mpc. The only
difference is that the number of galaxies increases
vastly. In addition, the histograms are still one-sided.
In order to verify that there was no issue with the way
the program was selecting or finding galaxies, we
calculated the redshift and Hubble constant for all 40
million galaxies in the catalog and found that the
histogram for those Hubble parameter values peaked
in the same place, 62.5 km/s*Mpc. The average
Hubble constant value for the whole catalog was
consistent with the original histograms, verifying that
the issue was with the way the Hubble constant was
being calculated and not with the galaxy selection or
some other component of the program.

C. Removing ET

We also tried removing ET from the detector
network to see if this would have an effect on the
Hubble constant calculation. Only using Advanced
LIGO and VIRGO, LIGO India, and KAGRA
produced a 94.4% detection rate, as opposed to the
previous 99.5% detection rate with ET. This was
expected due to ET’s vastly superior detection power.
There was ultimately no change in the Hubble
constant, demonstrating that the detection rate has no
effect on this calculation. Figure 15 shows that the
value is still 62.5 km/s*Mpc.

!
Figure'15:'Hubble'Constant'without'ET'

This also matches the value for the entire galaxy
catalog, showing that the value is not dependent on
any detector set but either on the catalog itself or the
way in which it is calculated. !

D. Changing Approximation

We then switched to a different, more precise

method of approximating the Hubble constant. The
assumption that redshift is much less than 1 is not
actually that accurate, given that our redshift values
were typically on the order of 0.1. The new
approximation is given in Equation 4, where z is
redshift and c is the speed of light. dL is the
luminosity distance, but instead of using the distance
for the source galaxy from the catalog, we used the
distance with the noise estimate figured in for the
corresponding signal galaxy.

!! = ! !!! !!!

! !"!
!(!)!

!
! ![2]!!!!!!!!!!!!!!!!!!!(4)

!
In this equation, h(z) is given by Equation 5. This is

a simplified form of Equation 3, where the dark
matter and energy densities are included. The values
used were 0.24 and 0.76.

ℎ ! = ! [Ω! 1+ ! ! + Ω!]!/!![2]!!!!!!!!!(5)
!

The result of using this new approximation was a
highly improved Hubble constant value. The new
value is 69.56 km/s*Mpc, which is extremely close to
the expected value of 70 km/s*Mpc. However, the
histogram is still one-sided. Figure 16 shows the new
result.

!
Figure'16:'New'Hubble'constant'

These results are much more in line with what we
expected, and show a big improvement on the initial
results. We would still like to investigate why the
histogram is one-sided.
!

 VII. CONCLUSIONS

This project has been moderately successful in
determining the Hubble constant from theoretical
black hole coalescence signals. At the time when
gravitational wave detections are made, this work
will be useful in making that calculation. We have
learned that we can accurately determine the Hubble
constant from such observations with some degree of
error. This project has a vast potential future. The
next steps would include determining the other
cosmological parameters, including the dark matter
and energy densities and the dark energy equation of
state. In this way, binary black hole mergers could
give us information about the nature of dark matter
and energy. This project is similar to the ET mock
data challenge, which involves using actual injections
of mock ET data and detecting the signals through an
analysis pipeline. This project is essentially a mock of
the mock data challenge in that it does not use mock
ET data and simulates the detection process.
However, this project can offer similar benefits in

helping to determine ET’s capabilities and detection
power. This project may be limited by the galaxy
catalog, which is only complete to 750 Mpc. A larger,
more complete catalog with higher redshifts may
yield different results. Another next step for this
project could involve repeating the process with a
new catalog, and then going on to calculate the other
parameters.

VIII. REFERENCES

[1] Amaro-Seoane, P. et al. (2011). Einstein telescope
design study: vision document. Retrieved from
http://www.et-gw.eu/etdsdocument

[2] Arun, K. G. et al. (2007). Higher signal
harmonics, LISA’s angular resolution, and dark
energy. Physical Review D, 76(10), doi:
10.1103/PhysRevD.76.104016

[3] Planck Collaboration. (2013). Planck 2013 results.
xvi. cosmological parameters. Retrieved from
http://arxiv.org/pdf/1303.5076v1.pdf

[4] Sathyaprakash, B .S., & Schutz, B. (2009).
Physics, astrophysics and cosmology with
gravitational waves. Living Reviews in Relativity, 12.
Retrieved from http://www.livingreviews.org/lrr-
2009-2

[5] The Virgo Consortium. (2009). The millennium
simulation. Retrieved from
http://www.virgo.dur.ac.uk/index.php?subject=millen
nium

[6] WMAP Science Team. (2011). Cosmology: the
study of the universe. Retrieved from
http://map.gsfc.nasa.gov/universe/

Appendix A – Main Program

%This code created by Teresa Symons 2013
%Requires galaxy catalogue to run

clc
clearvars -except galaxy spiral elliptical galred hub
close all
%**For this code to work, you must first load the milliennium full
%catalogue, spiral, elliptical, galred, and hub**

% select configuration of detectors:

% initial = HLV
% enhanced = HLV
% advanced = HLV
% advanced/india = HLVI
% et = E
% et and advanced = HLVIE
% et/advanced/kagra = HLVIKE

config = 'et/advanced/kagra';

%load appropriate galaxy catalog
%you MUST run this if you have not loaded a catalogue yet
%load('fake_millennium_full.mat')

%split galaxies by spiral and elliptical
%this doesn't need to be run again, but you MUST load 'spiral' and
%'elliptical' for this code to work
% spiral =
[galaxy.dec(galaxy.type==1),galaxy.ra(galaxy.type==1),galaxy.type(galaxy.type==1),galaxy.Lfr
ac(galaxy.type==1),galaxy.Lfracerr(galaxy.type==1),galaxy.d(galaxy.type==1),galaxy.derr(gala
xy.type==1)];
% elliptical = [galaxy.dec(galaxy.type==-1),galaxy.ra(galaxy.type==-
1),galaxy.type(galaxy.type==-1),galaxy.Lfrac(galaxy.type==-1),galaxy.Lfracerr(galaxy.type==-
1),galaxy.d(galaxy.type==-1),galaxy.derr(galaxy.type==-1)];

%This is just a test to see the horizon distance of all the detectors
% det = 'LHO';
% r = horizdist(det);
% hdist(1,1) = r;
% det = 'LLO';
% r = horizdist(det);
% hdist(1,2) = r;
% det = 'Virgo';
% r = horizdist(det);
% hdist(1,3) = r;
% det = 'aLIGO';
% r = horizdist(det);
% hdist(1,4) = r;
% det = 'aVirgo';
% r = horizdist(det);
% hdist(1,5) = r;
% det = 'ETB';
% r = horizdist(det);
% hdist(1,6) = r;
% det = 'KAGRA';
% r = horizdist(det);
% hdist(1,7) = r;
% varargin{1} = 'LLO';
% hdist(1,8) = r;

%This defines the amount of galaxies you want to pick from the catalogue
newamt = 1000;

%Here and below is old code no longer needed
%restrict amount of sources by distance
% ind = find(galaxy.d<=max(r));
% amt = length(ind);
% newind = round(1 + (amt-1).*rand(newamt,1));

%import ra, dec, and distance for distance limit desired
% for num = 1:length(newind)
% theta(num,:) = galaxy.ra(ind(newind((num))))/24*2*pi;
% phi(num,:) = galaxy.dec(ind(newind((num))))*pi/180;
% dist(num,:) = galaxy.d(ind(newind((num))));

% disterr(num,:) = galaxy.derr(ind(newind((num))));
% end

%random numbers between 1 and length of elliptica/spiral for indices
% newinde = round(1 + (length(elliptical)-1).*rand(newamt,1));
% newinds = round(1 + (length(spiral)-1).*rand(newamt,1));

%This is preparation to chose brighter galaxies over dimmer ones
%create new column with lfrac divided by sum of lfrac
% new = sum(elliptical(:,4));
% elliptical(:,8) = elliptical(:,4)./new;
% new2 = sum(spiral(:,4));
% spiral(:,8) = spiral(:,4)./new2;

%sort in descending order
% [elliptical(:,8),elliptical(:,9)] = sort(elliptical(:,8),'descend');
% [spiral(:,8),spiral(:,9)] = sort(spiral(:,8),'descend');

%find cumsum of result
% elliptical(:,10) = cumsum(elliptical(:,8));
% spiral(:,10) = cumsum(spiral(:,8));

%This is the percentage of elliptical galaxies desired
pctellip = 60;
%random selection weighted by distance and shape
for i = 1:newamt
 choice = rand;
 if choice < (pctellip/100)
 [c index] = min(abs(elliptical(:,10)-choice));
 newind = elliptical(index,9);
 theta(i,:) = elliptical(newind,2)/24*2*pi;
 theta2(i,:) = elliptical(newind,2)*360/24;
 phi2(i,:) = elliptical(newind,1);
 phi(i,:) = elliptical(newind,1)*pi/180;
 dist(i,:) = elliptical(newind,6);
 type(i,:) = 'e';
 elseif choice > (pctellip/100)
 [c index] = min(abs(spiral(:,10)-choice));
 newind = spiral(index,9);
 theta(i,:) = spiral(newind,2)/24*2*pi;
 theta2(i,:) = spiral(newind,2)*360/24;
 phi2(i,:) = spiral(newind,1);
 phi(i,:) = spiral(newind,1)*pi/180;
 dist(i,:) = spiral(newind,6);
 type(i,:) = 's';
 end
end

%Old code no longer needed
%import ra, dec, and distance for distance limit desired
% for num = 1:length(newind)
% theta(num,:) = galaxy.ra(newind((num)))/24*2*pi;
% theta2(num,:) = galaxy.ra(newind((num)));
% phi(num,:) = galaxy.dec(newind((num)))*pi/180;
% dist(num,:) = galaxy.d(newind((num)));
% disterr(num,:) = galaxy.derr(newind((num)));
% end

% djit = -1 + (1-(-1)).*rand(newamt,1);
% dist = dist + djit;

%angles for compute antenna response
computetheta = phi*(-1)+(pi/2);
computephi = theta-pi;

%generate random sky position (theta and phi)
% theta = galaxy.dec(1:10000)*pi/180*(-1)+(pi/2);
% phi = galaxy.ra(1:10000)/24*2*pi-pi;
% skypos = [phi,theta];

%generate random polarization angle in degrees
pol = (pi/2)*rand(newamt,1);

%make parameter matrix
% param = [skypos,pol];

%add distance to earth in units of mpc to parameter matrix
% param(:,4) = galaxy.d(1:10000);

%add inclination angle in degrees to parameter matrix
inc = acos(2*rand(newamt,1)-1);

%generate phic
phic = 2*pi*rand(newamt,1);

% generate tc
lambda = 12; %avg coalescence in months
tc = poissrnd(lambda,newamt,1);
%avg number of coalescences per year
avg = sum(tc) /(newamt*12);
rate = avg/((4/3)*pi*max(dist)^3);

%define frequency
f0 = 70;

%define lower and upper boundaries of integral
intlow = 10;
intup = 4000;

%define mass one and mass two
lowerlim = 3;
upperlim = 15;
mass1 = (lowerlim + (upperlim-lowerlim).*rand(newamt,1));
mass2 = (lowerlim + (upperlim-lowerlim).*rand(newamt,1));
m1 = mass1.*1.9891e30;
m2 = mass2.*1.9891e30;

%empty arrays for detectors and integrals
det1 = [];
det2 = [];
det3 = [];
det4 = [];
det5 = [];
det6 = [];

q1 = [];
q2 = [];
q3 = [];
q4 = [];
q5 = [];
q6 = [];

%switch for configuration
switch config

 case 'initial'
 detnum = 3;
 det = 'Virgo';

 % for z = 1:newamt
 % r(z,1) = horizdist(det,mass1(z,1),mass2(z,1));
 % end
 det1 = 'LHO';
 det2 = 'LLO';
 det3 = 'V';
 %ligo
 fun1 = @(x) 1./((x).^(7/3).* 9.*(1e-46).*((4.49.*(x./f0)).^(-56) +
0.16.*(x./f0).^(-4.52) + 0.52 + 0.32.*(x./f0).^2));

 %virgo
 fun2 = @(x) 1./((x).^(7/3).* (3.2e-46 .* (7.8.*(x./500)).^-5 + 2.8.*(x./500).^-1 +
0.63 + (x./500).^2));

 %integrate
 q1 = integral(fun1,intlow,intup);
 q2 = integral(fun1,intlow,intup);
 q3 = integral(fun1,intlow,intup);

 case 'enchanced'
 detnum = 3;

 case 'advanced'
 detnum = 3;
 det = 'aVirgo';
 % for z = 1:newamt
 % r(z,1) = horizdist(det,mass1(z,1),mass2(z,1));
 % end
 det1 = 'LHO';
 det2 = 'LLO';
 det3 = 'V';

 %aligo
 fun1 = @(x)1./((x).^(7/3).*1.35e-50 .* x .* (60000.*(x./10).^(-30) +
5.*(x./50).^(-6) ...
 + 1.07.*(x./100).^(-3.25) + 3.7.*(x./200).^(-1.25) ...
 + 0.9.*(x./300).^(-0.08) + 0.85.*(x./1000).^(0.8) ...
 + 0.53.*(x./2000).^(3)));

 %avirgo
 fun2 = @(x)1./((x).^(7/3).* (1.259e-24 .* (0.07.*exp(-0.142-
1.437.*(log10(x./300))+0.407.*(log10(x./300)).^2)+3.10.*exp(-0.466-1.043.*(log10(x./300))-
0.548.*(log10(x./300)).^2)+0.40.*exp(-0.304+2.896.*(log10(x./300))-
0.293.*(log10(x./300)).^2)+0.09.*exp(1.466+3.722.*(log10(x./300))-
0.984.*(log10(x./300)).^2))).^2);

 q1 = integral(fun1,intlow,intup);
 q2 = integral(fun1,intlow,intup);
 q3 = integral(fun2,intlow,intup);

 case 'advanced/india'
 detnum = 4;
 det = 'aVirgo';
 % for z = 1:newamt
 % r(z,1) = horizdist(det,mass1(z,1),mass2(z,1));
 % end
 det1 = 'LHO';
 det2 = 'LLO';
 det3 = 'V';
 det4 = 'LIO';

 %aligo
 fun1 = @(x)1./((x).^(7/3).*1.35e-50 .* x .* (60000.*(x./10).^(-30) +
5.*(x./50).^(-6) ...

 + 1.07.*(x./100).^(-3.25) + 3.7.*(x./200).^(-1.25) ...
 + 0.9.*(x./300).^(-0.08) + 0.85.*(x./1000).^(0.8) ...
 + 0.53.*(x./2000).^(3)));

 %avirgo
 fun2 = @(x)1./((x).^(7/3).* (1.259e-24 .* (0.07.*exp(-0.142-
1.437.*(log10(x./300))+0.407.*(log10(x./300)).^2)+3.10.*exp(-0.466-1.043.*(log10(x./300))-
0.548.*(log10(x./300)).^2)+0.40.*exp(-0.304+2.896.*(log10(x./300))-
0.293.*(log10(x./300)).^2)+0.09.*exp(1.466+3.722.*(log10(x./300))-
0.984.*(log10(x./300)).^2))).^2);

 q1 = integral(fun1,intlow,intup);
 q2 = integral(fun1,intlow,intup);
 q3 = integral(fun2,intlow,intup);
 q4 = integral(fun1,intlow,intup);

 case 'et'
 detnum = 1;
 det = 'ETB';
 % for z = 1:newamt
 % r(z,1) = horizdist(det,mass1(z,1),mass2(z,1));
 % end
 det1 = 'ET1';

 p1 = -4.05049;
 p2 = -0.687263;
 a0 = 185.623;
 b0 = 232.565;
 b1 = 31.1777;
 b2 = -64.7178;
 b3 = 52.242;
 b4 = -42.1643;
 b5 = 10.1708;
 b6 = 11.5317;
 c1 = 13.5793;
 c2 = -36.4586;
 c3 = 18.5625;
 c4 = 27.4297;
 S0 = 1.449936*10^-52;

 fun = @(x)1./((x).^(7/3).*S0.*((x./200).^p1 + a0.*(x./200).^p2 + b0 .* ...
 (1. + b1.*(x./200) + b2.*(x./200).^2 + b3.*(x./200).^3 + b4.*(x./200).^4 +
b5.*(x./200).^5 + b6.*(x./200).^6) ...
 ./ (1. + c1.*(x./200) + c2.*(x./200).^2 + c3.*(x./200).^3 + c4.*(x./200).^4)));

 q1 = integral(fun,intlow,intup);

 case 'et and advanced'
 detnum = 5;
 det = 'aVirgo';
 % for z = 1:newamt
 % r(z,1) = horizdist(det,mass1(z,1),mass2(z,1));
 % end
 det1 = 'LHO';
 det2 = 'LLO';
 det3 = 'V';
 det4 = 'LIO';
 det5 = 'ET1';

 %aligo
 fun1 = @(x)1./((x).^(7/3).*1.35e-50 .* x .* (60000.*(x./10).^(-30) +
5.*(x./50).^(-6) ...
 + 1.07.*(x./100).^(-3.25) + 3.7.*(x./200).^(-1.25) ...
 + 0.9.*(x./300).^(-0.08) + 0.85.*(x./1000).^(0.8) ...

 + 0.53.*(x./2000).^(3)));

 %avirgo
 fun2 = @(x)1./((x).^(7/3).* (1.259e-24 .* (0.07.*exp(-0.142-
1.437.*(log10(x./300))+0.407.*(log10(x./300)).^2)+3.10.*exp(-0.466-1.043.*(log10(x./300))-
0.548.*(log10(x./300)).^2)+0.40.*exp(-0.304+2.896.*(log10(x./300))-
0.293.*(log10(x./300)).^2)+0.09.*exp(1.466+3.722.*(log10(x./300))-
0.984.*(log10(x./300)).^2))).^2);

 %et
 p1 = -4.05049;
 p2 = -0.687263;
 a0 = 185.623;
 b0 = 232.565;
 b1 = 31.1777;
 b2 = -64.7178;
 b3 = 52.242;
 b4 = -42.1643;
 b5 = 10.1708;
 b6 = 11.5317;
 c1 = 13.5793;
 c2 = -36.4586;
 c3 = 18.5625;
 c4 = 27.4297;
 S0 = 1.449936*10^-52;

 fun3 = @(x)1./((x).^(7/3).*S0.*((x./200).^p1 + a0.*(x./200).^p2 + b0 .* ...
 (1. + b1.*(x./200) + b2.*(x./200).^2 + b3.*(x./200).^3 + b4.*(x./200).^4 +
b5.*(x./200).^5 + b6.*(x./200).^6) ...
 ./ (1. + c1.*(x./200) + c2.*(x./200).^2 + c3.*(x./200).^3 + c4.*(x./200).^4)));

 q1 = integral(fun1,intlow,intup);
 q2 = integral(fun1,intlow,intup);
 q3 = integral(fun2,intlow,intup);
 q4 = integral(fun1,intlow,intup);
 q5 = integral(fun3,intlow,intup);

 case 'et/advanced/kagra'
 detnum = 6;
 det = 'aVirgo';
 % for z = 1:newamt
 % r(z,1) = horizdist(det,mass1(z,1),mass2(z,1));
 % end
 det1 = 'LHO';
 det2 = 'LLO';
 det3 = 'V';
 det4 = 'LIO';
 det5 = 'K';
 det6 = 'ET1';

 %aligo
 fun1 = @(x)1./((x).^(7/3).*1.35e-50 .* x .* (60000.*(x./10).^(-30) +
5.*(x./50).^(-6) ...
 + 1.07.*(x./100).^(-3.25) + 3.7.*(x./200).^(-1.25) ...
 + 0.9.*(x./300).^(-0.08) + 0.85.*(x./1000).^(0.8) ...
 + 0.53.*(x./2000).^(3)));

 %avirgo
 fun2 = @(x)1./((x).^(7/3).* (1.259e-24 .* (0.07.*exp(-0.142-
1.437.*(log10(x./300))+0.407.*(log10(x./300)).^2)+3.10.*exp(-0.466-1.043.*(log10(x./300))-
0.548.*(log10(x./300)).^2)+0.40.*exp(-0.304+2.896.*(log10(x./300))-
0.293.*(log10(x./300)).^2)+0.09.*exp(1.466+3.722.*(log10(x./300))-
0.984.*(log10(x./300)).^2))).^2);

 %kagra
 fun3 = @(x)1./((x).^(7/3).* (6.499e-25 .* (0.72e-9.*exp(-1.43-
9.88.*(log10(x./100))-0.23.*(log10(x./100)).^2)+1.17.*exp(0.14-3.10.*(log10(x./100))-
0.26.*(log10(x./100)).^2)+1.70.*exp(0.14+1.09.*(log10(x./100))-
0.013.*(log10(x./100)).^2)+1.25.*exp(0.071+2.83.*(log10(x./100))-
4.91.*(log10(x./100)).^2))).^2);

 %et
 p1 = -4.05049;
 p2 = -0.687263;
 a0 = 185.623;
 b0 = 232.565;
 b1 = 31.1777;
 b2 = -64.7178;
 b3 = 52.242;
 b4 = -42.1643;
 b5 = 10.1708;
 b6 = 11.5317;
 c1 = 13.5793;
 c2 = -36.4586;
 c3 = 18.5625;
 c4 = 27.4297;
 S0 = 1.449936*10^-52;

 fun4 = @(x)1./((x).^(7/3).*S0.*((x./200).^p1 + a0.*(x./200).^p2 + b0 .* ...
 (1. + b1.*(x./200) + b2.*(x./200).^2 + b3.*(x./200).^3 + b4.*(x./200).^4 +
b5.*(x./200).^5 + b6.*(x./200).^6) ...
 ./ (1. + c1.*(x./200) + c2.*(x./200).^2 + c3.*(x./200).^3 + c4.*(x./200).^4)));

 q1 = integral(fun1,intlow,intup);
 q2 = integral(fun1,intlow,intup);
 q3 = integral(fun2,intlow,intup);
 q4 = integral(fun1,intlow,intup);
 q5 = integral(fun3,intlow,intup);
 q6 = integral(fun4,intlow,intup);
end

%add fplus and fcross
[Fp,Fc] = antenna(detnum,det1,det2,det3,det4,det5,det6,pol,computephi,computetheta,newamt);

%solve for chirp mass
chirp = ((m1.*m2).^(3/5))./((m1+m2).^(1/5));

%find SNR for all detectors
[signoise] = SNR(detnum,chirp,inc,dist,Fp,Fc,newamt,q1,q2,q3,q4,q5,q6);

%calculate last column of trigger matrix
endtrig = 10+detnum;

%find SNR >= 5 in two detectors
if detnum > 1
 [search,junk] = find(signoise>=5);
 search = unique(search);
 for k = 1:length(search)
 search2 = find(signoise(search(k),:)>=5);
 if length(search2)>=2
 triggers(k,1) = phi2(search(k),1);
 triggers(k,2) = theta2(search(k),1);
 triggers(k,3) = dist(search(k),1);
 triggers(k,4) = chirp(search(k),1);
 triggers(k,5) = mass1(search(k),1);
 triggers(k,6) = mass2(search(k),1);
 triggers(k,7) = inc(search(k),1);
 triggers(k,8) = pol(search(k),1);

 triggers(k,9) = Fp(search(k),1);
 triggers(k,10) = Fc(search(k),1);
 triggers(k,11:endtrig) = signoise(search(k),:);
 end
 end

 %clear out zeros
 [rows,col]=find(triggers == 0);
 u = unique(rows);
 triggers(u,:) = [];

 %create final matrix
 final = [];

 [row,col] = size(triggers);
 %find SNR quadrature sum >= 12
 for a = 1:row
 if sqrt(triggers(a,11)^2 + triggers(a,12)^2 + triggers(a,13)^2+ triggers(a,14)^2+
triggers(a,15)^2+ triggers(a,16)^2) >= 12
 final(a,1:col) = triggers(a,1:col);
 end
 end

 %clear out zeros
 [rows,col]=find(final == 0);
 u = unique(rows);
 final(u,:) = [];

 %find new parameters of found signals for all detectors
 %create ini file
 %use 'jitterval2' for errors decreased by factor of 10
 fileName = 'jitterval';
 % inifile(fileName,'new');

 %read values from ini file
 [keys,sections,subsections] = inifile(fileName,'readall');

 %find system snr
 [r,c] = size(final);
 totalsnr = sqrt((final(:,11).^2) + (final(:,12).^2) + (final(:,13).^2) +
(final(:,14).^2) + (final(:,15).^2)+(final(:,16).^2));

 %Here we add the noise to all parameters
 %total mass
 %get current values
 totmass = final(:,5) + final(:,6);
 %get factor that snr is divided by
 fact = str2num(keys{1,4});
 %calculate array of jitter values using randn for gaussian
 totmassjit = -(fact./totalsnr) + ((fact./totalsnr)-(-(fact./totalsnr))).*randn(r,1);
 %jitter old values
 totmass = totmass + totmassjit;

 %mass ratio
 massrat = final(:,5)./final(:,6);
 fact = str2num(keys{2,4});
 ratmassjit = -(fact./totalsnr) + ((fact./totalsnr)-(-(fact./totalsnr))).*randn(r,1);
 massrat = massrat + ratmassjit;

 %right ascension
 ra = final(:,2);
 fact = str2num(keys{3,4});
 rajit = -(fact./totalsnr) + ((fact./totalsnr)-(-(fact./totalsnr))).*randn(r,1);
 ra = (ra + rajit)*24/360;

 %declination
 dec = final(:,1);
 fact = str2num(keys{3,4});
 decjit = -(fact./totalsnr) + ((fact./totalsnr)-(-(fact./totalsnr))).*randn(r,1);
 dec = dec + decjit;

 %distance
 newdist = final(:,3);
 fact = str2num(keys{4,4});
 distjit = -(fact./totalsnr) + ((fact./totalsnr)-(-(fact./totalsnr))).*randn(r,1);
 newdist = newdist + distjit;

 %inclination
 newinc = final(:,7)*180/pi;
 fact = str2num(keys{5,4});
 incjit = -(fact./totalsnr) + ((fact./totalsnr)-(-(fact./totalsnr))).*randn(r,1);
 newinc = newinc + incjit;

 %polarization
 newpol = final(:,8)*180/pi;
 fact = str2num(keys{6,4});
 poljit = -(fact./totalsnr) + ((fact./totalsnr)-(-(fact./totalsnr))).*randn(r,1);
 newpol = newpol + poljit;

 %snr
 rnd = -1 + (1-(-1)).*rand(r,1);
 %create random set of numbers that are either -1 or 1
 find(rnd<0);
 rnd(ans) = -1;
 find(rnd>0);
 rnd(ans) = 1;
 %use chi square function of snr at 2 dof to get jitter
 %values
 snrjit = (chi2pdf(totalsnr,2)).*rnd;
 %jitter snr values
 totalsnr = totalsnr + snrjit;

 %error box

 %find indices of distance, ra, and dec that are within correct ranges
 for i = 1:r
 distind{:,i} = find(galaxy.d < ((newdist(i))+(abs(distjit(i)))) & galaxy.d >
((newdist(i))-(abs(distjit(i)))));
 raind{:,i} = find(galaxy.ra < ((ra(i))+(abs(rajit(i)))) & galaxy.ra > ((ra(i))-
(abs(rajit(i)))));
 decind{:,i} = find(galaxy.dec < ((dec(i))+(abs(decjit(i)))) & galaxy.dec >
((dec(i))-(abs(decjit(i)))));
 end

 %find matching indices of ra and dec, then also distance
 for j = 1:r
 comang{1,j} = intersect(raind{j},decind{j});
 galind{1,j} = intersect(comang{1,j},distind{j});
 end

 %create matrix of found galaxies
 gal = [];
 for i = 1:r
 newgal = galind{i};
 newgal(:,2) = newdist(i,1);
 gal = [gal;newgal];

 end

 gallength = length(gal);

 %first col is galaxy index, second col is jittered distance of
 %corresponding signal, third col is actual distance, fourth col is
 %redshift, fifth col is old hubble value, sixth col is new (better) hubble value
 gal(:,3) = galaxy.d(gal(:,1));
 gal(:,4) = galred(gal(:,1));
 gal(:,5) = hub(gal(:,1));
 gal(:,6) = hubble(gal,gallength);

 %plot histogram of hubble values
 hist(gal(:,6));

 %calculate effective distance
 effectdist = newdist./(((1/4).*(final(:,9).^2).*(1+ (cos(newinc).*cos(newinc))).^2 +
((final(:,10)).^2).*(cos(newinc).*cos(newinc))).^(1/2));

 %plot all signals, signals that pass first test, and signals that pass
 %second
 % scatter(computephi(:,1),computetheta(:,1),'g','.')
 % hold
 % scatter(triggers(:,1),triggers(:,2),'r','.')
 % scatter(final(:,1),final(:,2),'b','.')

 %plot ra and dec, vary color by distance
 % scatter(final(:,1),final(:,2), 50, final(:,3),'.');
 % figure(2);
 % scatter(final(:,1),final(:,2), 50, final(:,4),'.');

 %plot 6 patches of sky position for different bins of distances
 % for x = 125:125:750
 % found = [];
 % found = find(dist < x & dist > x-125);
 % figure(x/125);
 % plot(theta(found),phi(found),'o');
 % end

 % data = [];
 % %plot number of signals versus distance in bins
 % for x = min(dist):50:max(dist)
 % found = [];
 % found = find(dist < x & dist > x-50);
 % datanew = [log(x),log(length(found))];
 % data = [data;datanew];
 % end
 %
 % TF = isinf(data);
 % [r,c] = find(TF ==1);
 % data(r,:) = [];
 %
 % plot(data(:,1),data(:,2),'o');
 % hold on
 % lsline
 % title('Log Plot of Number Density');
 % xlabel('Distance');
 % ylabel('Number of Galaxies');
 % p = polyfit(data(:,1),data(:,2),1);
 % yfit = polyval(p,data(:,1));
 % yresid = data(:,2) - yfit;
 % SSresid = sum(yresid.^2);
 % SStotal = (length(data(:,2))-1) * var(data(:,2));
 % rsq = 1 - SSresid/SStotal;
 % h = chi2gof(data(:,1));

 % e = std(data(:,1))*ones(size(data(:,1)));
 % eb = errorbar(data(:,1),data(:,2),e);
 % set(eb(1),'Linestyle','none','Marker','s','MarkerEdgeColor','k');
 %
 % %plot sky position with different colors for different distance bins
 % data2 = [];
 % figure(2);
 % for x = 1:6
 % found = [];
 % found = find(dist < x*125 & dist > x*125-125);
 % if x ==1
 % scatter(theta2(found),sin(phi(found)),50,'r','o');
 % title('Sky Positions of Various Sets of Distances');
 % xlabel('Right Ascension (hrs)');
 % ylabel('Sine of Declination (rad)');
 % legend('Distance 0-125');
 % hold on
 % elseif x ==2
 % scatter(theta2(found),sin(phi(found)),50,'g','o');
 % legend('Distance 126-250');
 % elseif x ==3
 % scatter(theta2(found),sin(phi(found)),50,'b','o');
 % legend('Distance 251-375');
 % elseif x ==4
 % scatter(theta2(found),sin(phi(found)),50,'c','o');
 % legend('Distance 376-500');
 % elseif x ==5
 % scatter(theta2(found),sin(phi(found)),50,'m','o');
 % legend('Distance 501-625');
 % elseif x ==6
 % scatter(theta2(found),sin(phi(found)),50,'k','o');
 % legend('Distance 0-125','Distance 126-250','Distance 251-375','Distance
376-500','Distance 501-625','Distance 626-750');
 % end
 %
 % end
 %
 %
end

%optional test for timing error
% %detector list
% detectors = {'V';'L';'H'};
%
% %compute delay
% delay = computeTimeShifts(detectors,param(:,1:2));
%
% %bandwidths
% bandwidthV = 188.8889;
% bandwidthL = 94.9164;
%
% %find timing error for virgo
% SNR=8;
% dtV=(2*pi*bandwidthV*SNR)^-1;
% dtV = dtV*1.2; %-- adds a 20% timing error
% %timingErrorV = dtV * ones(size(detectors));
% % ytime = (2*rand(3,1)-1).*0.2;
% % timingErrorV = dtV+dtV.*ytime;
%
% %find timing error for ligo
% dtL=(2*pi*bandwidthL*SNR)^-1;
% dtL = dtL*1.2; %-- adds a 20% timing error

% % timingErrorL = dtL * ones(size(detectors));
% % timingErrorL = timingErrorL+timingErrorL.*ytime;
%
% %find final timing errors for all detectors
% alltimingErrorV = repmat(dtV,10000,1)./param(:,14);
% alltimingErrorL = repmat(dtL,10000,1)./param(:,13);
% alltimingErrorH = repmat(dtL,10000,1)./param(:,12);
%
% %combine timing errors into one matrix
% timingerrors = [alltimingErrorV,alltimingErrorL,alltimingErrorH]; %VLH
%
% %find arrival times
% arrivaltimes = delay + randn(10000,3) .* timingerrors; %VLH
%
% %test to see if times match
% pass = find(timecoincidence(arrivaltimes,detectors,timingerrors,3));

Appendix B – Antenna Pattern Function

function [Fp,Fc] =
antenna(detnum,det1,det2,det3,det4,det5,det6,pol,computephi,computetheta,newamt)

%this function calculates the antenna patterns for up to six detectors
%by Teresa Symons 2013

%detector 1
if detnum == 1 || detnum == 2|| detnum == 3|| detnum == 4|| detnum == 5|| detnum == 6
 for i = 1:newamt
 [Fp1(i,:), Fc1(i,:), Fb] =
ComputeAntennaResponse(computephi(i,1),computetheta(i,1),pol(i,1),det1);
 end
 Fp = Fp1;
 Fc = Fc1;
end

%detector 2
if detnum ==2|| detnum == 3|| detnum == 4|| detnum == 5|| detnum == 6
 for i = 1:newamt
 [Fp2(i,:), Fc2(i,:), Fb] =
ComputeAntennaResponse(computephi(i,1),computetheta(i,1),pol(i,1),det2);
 end
 Fp = [Fp1,Fp2];
 Fc = [Fc1,Fc2];
end

%detector 3
if detnum == 3|| detnum == 4|| detnum == 5|| detnum == 6
 for i = 1:newamt
 [Fp3(i,:), Fc3(i,:), Fb] =
ComputeAntennaResponse(computephi(i,1),computetheta(i,1),pol(i,1),det3);
 end
 Fp = [Fp1,Fp2,Fp3];
 Fc = [Fc1,Fc2,Fc3];
end

%detector 4
if detnum == 4|| detnum == 5|| detnum == 6
 for i = 1:newamt
 [Fp4(i,:), Fc4(i,:), Fb] =
ComputeAntennaResponse(computephi(i,1),computetheta(i,1),pol(i,1),det4);
 end
 Fp = [Fp1,Fp2,Fp3,Fp4];
 Fc = [Fc1,Fc2,Fc3,Fc4];

end

%detector 5
if detnum == 5|| detnum == 6
 for i = 1:newamt
 [Fp5(i,:), Fc5(i,:), Fb] =
ComputeAntennaResponse(computephi(i,1),computetheta(i,1),pol(i,1),det5);
 end
 Fp = [Fp1,Fp2,Fp3,Fp4,Fp5];
 Fc = [Fc1,Fc2,Fc3,Fc4,Fc5];
end

%detector 6
if detnum == 6
 for i = 1:newamt
 [Fp6(i,:), Fc6(i,:), Fb] =
ComputeAntennaResponse(computephi(i,1),computetheta(i,1),pol(i,1),det6);
 end
 Fp = [Fp1,Fp2,Fp3,Fp4,Fp5,Fp6];
 Fc = [Fc1,Fc2,Fc3,Fc4,Fc5,Fc6];
end

end

Appendix C – SNR Function

function [signoise] = SNR(detnum,chirp,inc,dist,Fp,Fc,newamt,q1,q2,q3,q4,q5,q6)

%this function calculates the SNR for up to six detectors
%by Teresa Symons 2013

%detector 1
if detnum == 1 || detnum == 2|| detnum == 3|| detnum == 4|| detnum == 5|| detnum == 6
 for j = 1:newamt
 signoise(j,1) = (((6.67384e-
11^(5/6))/(299792458^(3/2)))*((5/(24*pi^(4/3)))^(1/2))*((chirp(j,1)^(5/6))/(dist(j,1)*100000
0*3.08567758e16))*(((Fp(j,1)^2)*((1+(cos(inc(j,1))*cos(inc(j,1)))))^2)+4*(((Fc(j,1))^2)*(cos
(inc(j,1))*cos(inc(j,1)))))^(1/2)*((q1)^(1/2)));
 end
% sjit = -1 + (1-(-1)).*randn(newamt,1);
% signoise(:,1) = signoise(:,1) + sjit;
end

%detector 2
if detnum ==2|| detnum == 3|| detnum == 4|| detnum == 5|| detnum == 6
 for j = 1:newamt
 signoise(j,2) = (((6.67384e-
11^(5/6))/(299792458^(3/2)))*((5/(24*pi^(4/3)))^(1/2))*((chirp(j,1)^(5/6))/(dist(j,1)*100000
0*3.08567758e16))*(((Fp(j,2)^2)*((1+(cos(inc(j,1))*cos(inc(j,1)))))^2)+4*(((Fc(j,2))^2)*(cos
(inc(j,1))*cos(inc(j,1)))))^(1/2)*((q2)^(1/2)));
 end
% sjit = -1 + (1-(-1)).*randn(newamt,1);
% signoise(:,2) = signoise(:,2) + sjit;
end

%detector 3
if detnum == 3|| detnum == 4|| detnum == 5|| detnum == 6
 for j = 1:newamt
 signoise(j,3) = (((6.67384e-
11^(5/6))/(299792458^(3/2)))*((5/(24*pi^(4/3)))^(1/2))*((chirp(j,1)^(5/6))/(dist(j,1)*100000
0*3.08567758e16))*(((Fp(j,3)^2)*((1+(cos(inc(j,1))*cos(inc(j,1)))))^2)+4*(((Fc(j,3))^2)*(cos
(inc(j,1))*cos(inc(j,1)))))^(1/2)*((q3)^(1/2)));
 end
% sjit = -1 + (1-(-1)).*randn(newamt,1);

% signoise(:,3) = signoise(:,3) + sjit;
end

%detector 4
if detnum == 4|| detnum == 5|| detnum == 6
 for j = 1:newamt
 signoise(j,4) = (((6.67384e-
11^(5/6))/(299792458^(3/2)))*((5/(24*pi^(4/3)))^(1/2))*((chirp(j,1)^(5/6))/(dist(j,1)*100000
0*3.08567758e16))*(((Fp(j,4)^2)*((1+(cos(inc(j,1))*cos(inc(j,1)))))^2)+4*(((Fc(j,4))^2)*(cos
(inc(j,1))*cos(inc(j,1)))))^(1/2)*((q4)^(1/2)));
 end
% sjit = -1 + (1-(-1)).*randn(newamt,1);
% signoise(:,4) = signoise(:,4) + sjit;
end

%detector 5
if detnum == 5|| detnum == 6
 for j = 1:newamt
 signoise(j,5) = (((6.67384e-
11^(5/6))/(299792458^(3/2)))*((5/(24*pi^(4/3)))^(1/2))*((chirp(j,1)^(5/6))/(dist(j,1)*100000
0*3.08567758e16))*(((Fp(j,5)^2)*((1+(cos(inc(j,1))*cos(inc(j,1)))))^2)+4*(((Fc(j,5))^2)*(cos
(inc(j,1))*cos(inc(j,1)))))^(1/2)*((q5)^(1/2)));
 end
% sjit = -1 + (1-(-1)).*randn(newamt,1);
% signoise(:,5) = signoise(:,5) + sjit;
end

%detector 6
if detnum == 6
 for j = 1:newamt
 signoise(j,6) = (((6.67384e-
11^(5/6))/(299792458^(3/2)))*((5/(24*pi^(4/3)))^(1/2))*((chirp(j,1)^(5/6))/(dist(j,1)*100000
0*3.08567758e16))*(((Fp(j,6)^2)*((1+(cos(inc(j,1))*cos(inc(j,1)))))^2)+4*(((Fc(j,6))^2)*(cos
(inc(j,1))*cos(inc(j,1)))))^(1/2)*((q6)^(1/2)));
 end
% sjit = -1 + (1-(-1)).*randn(newamt,1);
% signoise(:,6) = signoise(:,6) + sjit;
end

end

Appendix D – Hubble Constant Function

function H0 = hubble(gal,gallength);

%This function calculates the Hubble parameter using the redshift and the
%distance
%by Teresa Symons 2013

fun = @(x)1./((0.24*(1+x).^3 + 0.76).^(1/2));
H0 = [];
%for each found galaxy integrate function from 0 to z
for i = 1:gallength
 hubint = integral(fun,0,gal(i,4));
 %hub value is c * 1+z / d*int
 newhub = ((299792.458 * (1+gal(i,4)))/ gal(i,2))*hubint;
 H0 = [H0;newhub];
end

