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Abstract

We test the agreement between the standard deviation predicted by e↵ective Fisher Matrix and

by MCMC calculated, 1-D posterior for the symmetric mass ratio and chirp mass parameters of a

non-spinning, inspiral, BH-NS binary. We had planned to obtain MCMC data for 6 di↵erent total

masses, but computational di�culties prevented any runs up to the time of writing. Instead we

obtained MCMC data from another paper for an identical injection to our 11.4 total mass binary.

We find that, in this case, the e↵ective Fisher Matrix and the MCMC results are in close agreement.
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I. INTRODUCTION

As the next generation of detectors come online, the work of gravitational wave physics

will begin to shift from just making a detection to actually extracting information about the

generating source of some detected signal. Thus, while detector sensitivity is still a crucial

area of development, it is equally important to be able to assess and improve the accuracy,

precision, and e�ciency of a detector and it’s data extraction pipeline.

Fisher Information Matrices provide a useful statistical tool for meeting this goal and are

a natural choice given that they naturally extend from the matched filtering techniques used

to extract a signal from the noisy detector output. Matched filtering pairs a mathematically

constructed template waveform from known parameter values with the detector output and

takes their inner product (referred to as an overlap function), normalized by the detector’s

noise curve. Various models exist for the purpose of template construction. Each model

uses di↵erent parameter sets, or extends a previous model to a higher post-Newtonian order.

The parameters used in each model describe the physical quantities of the generating source

(binary mass, orbital phase, distance to source); a typical model uses between 9 and 15

parameters. Abstractly, the inner product assigns a scalar to a vector pair corresponding

to the ”distance” between them, and this provides an intuitive understanding of matched

filtering: it quantitatively assesses the dissimilarity between the template and the signal.

The resulting scalar output is referred to as the Signal to Noise Ratio (SNR).

If a template-signal pair generates a su�ciently high SNR then the template and the

corresponding parameter values used to generate it are flagged as a measurement and is

passed on for parameter estimation. Parameter estimation makes use of the overlap function

as part of the ”posterior”, a multidimensional probability density function which assigns a

probability to each set of parameter values. The probability distribution generated by this

function serves as a physical representation both of the measurement and of its precision.

The maxima of the distribution corresponds to the most probable parameter values of the

generating source, while the standard deviation of the distribution represents the precision

of the measurement. That is to say, a wider curve implies that a large range of values are

probably the ”true” value of the GW source, while a narrower curve implies that a small

range of such values of probable. Generally it is assumed that this distribution is multivariate

Gaussian, however depending on correlations between parameters and the specific noise
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realization this is not always exactly true. It is not uncommon for the posterior distribution

to have several local maxima and minima, and may not even have a single global maximum,

this obvious undesirable.

Calculating the probability density curve over a representation patch of parameter space

presents some di�culties, however. It requires a random walk through a high-dimensional

space, and a full calculation of the posterior at each point. In the case of a non-spinning

BH-NS binary, 9 parameters are required to define the system, and when spinning cases

are allowed as many as 15 parameters are needed; thus, calculating a posterior can be very

computationally expensive, particularly if the posterior has many local maxima and minima.

As the parameter estimation pipeline is developed, several template generating models

need to be compared. A model is examined by first generating a simulated waveform from

known parameter values, and then injecting it into real detector noise. This is then run

through the detector pipeline and extracted using templates generated by the model under

consideration. The posterior generated by these templates is the best metric to determine

the quality of the model. Ideally the global maximum of the posterior will correspond

closely to the parameter values of the simulated waveform, and furthermore the standard

deviation will be reasonably low. For our current generation of models, the deflection of

the global maximum from the true parameter values is depends primarily on the noise from

the detector and the SNR of the measurement rather than the model chosen, however the

standard deviation of the distribution, ie. the precision of the measurement, does depend

strongly on the model used. Thus there is a need for a fast and e↵ective method of comparing

the precision two di↵erent models would allow. This the role of the Fisher Information

Matrix; the standard definition of the FIM is motivated by the expression for a multivariate

Gaussian probability function, but more practically it can be described as the inverse of the

covariance matrix of some distribution. The FIM can be calculated analytically, requiring

only the template generating model. In doing so, the precision of the parameter estimation

pipeline can quickly be found without actually having make a measurement of an injected,

simulated signal: providing a fast, simple method of comparing waveform models.

The Fisher Matrix has limitations, however. It assumes a model with linearly correlated

parameters, a detector with Gaussian noise, and a high SNR. Rodriguez et al. have shown

that at total binary mass higher than 10.0 solar mass, the standard deviation predicted by

Fisher Matrices does not agree with the standard deviation of a fully calculated posterior
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FIG. 1. Results from Rodriguez et al. showing disagreement between the standard Fisher Matrix

and MCMC results at high total mass (red circles).

(Fig. 1). Motivated by this, Cho et al. have defined an alternative, e↵ective Fisher Matrix,

calculated from a quadratic fit to the posterior at some scale of interest.

Cho et al. showed that the e↵ective Fisher Matrix and MCMC are consistent for a non-

spinning BH-NS binary inspiral, however they used only a single injection for a 4.5 solar

mass binary . In this work, we vary the BH mass and distance to the binary to study the

consistency between the e↵ective Fisher Matrix and MCMC results for non-spinning BH-NS

inspiral signals with regard to predicting the precision of measurement of the chirp mass

and symmetric mass ratio parameters.

II. BACKGROUND

A. Overlap and Ambiguity Function

Matched filtering relies on an inner product referred to as an overlap function. The

overlap function accepts two input signals and returns a scalar proportionate to how similar

the inputs are (ie. it is an inner product weighted by the LIGO noise curve) and is defined:

ha(t)|b(t)i ⌘
Z

ã(f)b̃(f)⇤

Sn
(1)

Where a(t) and b(t) are two time domain waveforms and ã(f) and b̃(f) are their Fourier

transforms.
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FIG. 2. The overlap (P) between a template waveform and a waveform with varying chirp mass

(Mc). Note how the structure of the function changes at di↵erent levels of SNR

In some cases the overlap function can have scale-dependent structure (see Fig. 2). As

standard Fisher Matrices rely on di↵erentiating a waveform by each of its parameters they

respond strongly to fine scale structure. Therefore the presence of this structure will have

ramifications for the e↵ectiveness of a standard Fisher Matrix as we will discuss shortly.

Furthermore from Cho et al. we define a normalized ambiguity function between two

signals a(�1) and b(�2) as:

P (a(�1), b(�2)) ⌘ maxtc, 
|ha(�1)|b(�2)i|p

ha(�1)|a(�1)ihb(�2)|b(�2)i
(2)

With this we can state that two di↵erent signals are distinguishable if the ambiguity

function between them satisfies:

1� P � 1/⇢2 (3)

This will have relevance later in our discussion of the e↵ective Fisher Matrix.

B. MCMC and Calculating Posteriors

Calculation of posteriors relies upon Bayes Theorem which states:

p(�̂|s) / p(�̂)L(s|�̂) (4)

where p(�̂|s) is the probability (posterior) that the parameter vector �̂ contains the actual

values of the parameters of the generating source given some measured signal s, p(�̂) is

the ”prior” which reflects our previous knowledge of the probability of certain parameter
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values (in this context it is a constant over all physically possible values, representing total

ignorance), and where L(s|�̂) is the ”likelihood function” which expresses how likely we are

to have measured such signal given some parameter vector.

The detector output S can be represented as the sum of a noise realization N0 and a

”true” signal h(�), thus:

S = N0 + h(�) (5)

If we assume that the noise is a stationary, Gaussian process then the probability of some

noise realization is:

p(N0) / e
�hN0|N0i

2 (6)

Combined with the expression for detector output we have an expression for the likelihood

function:

L(S|�̂) = e
�hS�h(�̂)|S�h(�̂)i

2 (7)

Since the log likelihood has the same maximum as the likelihood itself it can also serve

in Bayes’ theorem. With this then, given some normative constant C, we can write our

posterior function:

p(�̂|S) = C ⇤ �hS � h(�̂)|S � h(�̂)i
2

(8)

This expression of the posterior probability of some parameter vector is used by MCMC

algorithms to calculate the posterior distribution in the parameter space of the model. In

our usage MCMC refers specifically to the Metropolis-Hastings algorithm. In this algorithm

a Markov Chain is generated, where each step in the chain is probabilistically independent

from the previous step. The chain begins at some random point in the parameter space

and from here a candidate point is selected from a small neighbourhood. The posterior

at the candidate point is calculated, and the candidate point is then accepted with some

probability, which is weighted to favor points with a higher posterior probability. In this

way the random walk will cover a representative area of the parameter space while never

straying far from the global maximum. A problem arises when the posterior has several

local maxima. These can attract the Markov Chain and cause it to converge prematurely,

ie. before su�ciently exploring the global maximum. To prevent this the MCMC run is

passed between several computing threads. In each thread the posterior is ’flattened’ by

some temperature factor T (eg. thread 0 is the unchanged posterior, thread 1 is slightly

more flattened, thread 2 even more, etc.) As the run is passed between them the Markov
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Chain will still be attracted to the maxima of the posterior, however the probability of it

converging on some local maxima is reduced. To further ensure that a good portion of the

parameter space is covered a single injection is typically run between three and five times,

and the results are combined.

Cho et al. also provides this alternate expression for log likelihood:

lnL = �⇢2(1� P ) (9)

Where ⇢ is the SNR and P is again the ambiguity function. For a derivation of this

expression see Cho et al.

C. Standard Fisher Matrices

Assuming that �̂ ⇡ �̂0 we may develop a Taylor approximant to first order of h(�̂) about

�̂0:

h(�̂) ⇡ h(�̂0) + ��ihi (10)

Where �i represents the ith parameter of �̂, ��i = |�i � �i
0|, and hi is the derivative

of h with respect to �i and evaluated at �i
0. Note that we are employing the summation

convention, where repeated sub and superscripts are summed over. This is called the Linear

Signal Approximation (LSA), and if we assume that h(�̂) is close to h(�̂0) then we can recast

(3):

S = N0 + h(�̂0) (11)

From here it is simple to combine (6) and (9):

p(�̂|S) = exp[
�1

2
hN0 + h(�̂0)� h(�̂)|

N0 + h(�̂0)� h(�̂)i
(12)

It is then obvious that by using the LSA (8) and by exploiting the linearity of the inner

product we can arrive at our final formulation of (6):

p(�̂|S) = N ⇤ exp[1
2
��i��jhhi|hji] (13)

As noted above, this is all derived from a Gaussian distribution, and thus (11) represents

a multivariate, Gaussian distribution which gives a probability density function for some
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measurement error around parameters �i and �j. Therefore we define each element of our

Fisher Matrix:

�ij ⌘ hhi|hji (14)

So that the covariance matrix ⌃ij can be found as the inverse of the Fisher Matrix:

⌃ij = �ij
�1 (15)

D. E↵ective Fisher Matrices

While the Fisher Matrix is an extremely useful tool in the case of purely Gaussian data,

ie. when the SNR is very high and the LSA holds completely true. However in many

applications these assumptions do not hold so well, and the Fisher Matrix will frequently

fall prey to the scale dependence discussed above. As such, the �ij predicted by the FM

are typically overly optimistic when compared to a full computation of the posterior. It is

therefore more useful to define an e↵ective Fisher Matrix (e↵FM). Using the definition of

the log likelihood given by (7) and an alternate expression of the Fisher Matrix relating it

to the log likelihood. We can also define a normalized Fisher Matrix, �̂ij (Cho et al. 26, 39):

�ij =
�@2 lnL(�̂)

@�i@�j

= ⇢2
@2(1� P )

@�i@�j
= ⇢2�̂ij

(16)

With this we can motivate a step-by-step method of calculating the e↵FM.

First we must plot the overlap P between some fiducial waveform and a template varied

over some scale of interest (typically P � .99) . From here we can use a least squares fitting

to create a quadratic fitting P ⇤ (a quadratic curve is a decent approximation of Gaussian

curve, particularly at high values along the horizontal axis):

P ⇤ = Pmax + p1��
2
1 + p2��

2
2 + p12��1��2 (17)

Where p1, p2, and p12 are fitting constants and we have chosen to set Pmax = 1. If we

then substitute P ⇤ for P in (14) we have our definition o↵ e↵�̂ij, furthermore we can find

each element of the e↵ective Fisher Matrix by way of the fitting constants. For example,

e↵�̂11 = �2p1, this can be shown:
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e↵�̂ij =
@2(1� P ⇤)

@�i@�j

=
@2(�p1��2

1 � p2��2
2 � p12��1��2)

@�i@�j

e↵�̂11 =
@2(�p1��2

1 � p2��2
2 � p12��1��2)

@2�1

= �2p1

(18)

Thus by using a least squares regression to find suitable fitting constants the e↵ective

Fisher Matrix can be easily computed. To find the fitting scale P we can use:

1� P  1

⇢2
(19)

By basing our fitting scale on the SNR, ⇢, we are calculating the precision of the mea-

surement where the signal is strongest.

III. RESULTS

To provide a simple metric for the consistency between the standard deviation predicted

by the FM and by MCMC parameter estimation we define a standard deviation ratio Ro-

driguez et al.:

⇤ ⌘ �FM

�MCMC
(20)

Where �FM and �MCMC are the standard deviations predicted by FM and MCMC es-

timation respectively. Note that ⇤ ⇡ 1 indicates the desired agreement between FM and

MCMC.

A. Injection Parameters

To test the e↵ective Fisher Matrix we used the SpinTaylorT4 waveform model for a non-

spinning, BH-NS binary. Furthermore, Cho et al. have shown that the e↵ective Fisher

Matrix is particularly suitable for the chirps mass and symmetric mass ratio (⌘) parameters.

Therefore these are the two parameters we generated e↵ective Fisher Matrices for. They are
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m1 Mc ⌘ Distance

2.8 1.7034 0.222222 15.0

5.0 2.173 0.170898 18.0

6.0 2.4028 0.153397 20.0

10.0 2.9943 0.107725 23.1

20.0 4.0014 0.06114 26.0

30.0 4.7268 0.043598 26.3

FIG. 3. The injected values for each BH mass and the SNR corrected distances.

each given:

⌘ =
m1 ⇥m2

(m1 +m2)2

Mc = (m1 +m2)⇥ ⌘3/5
(21)

Where m1 and m2 are the individual masses of the binary components.

Cho et al. calculated an e↵ective Fisher Matrix for these two parameters only for an 11.4

solar mass binary. Motivated by Rodriguez et al. we fixed m2 = 1.4 (m2 being the neutron

star mass) and varied the black hole mass (m1) from 2.8 to 30.0 solar mass. For each value

of m1 we calculated Mc and ⌘ (see Fig. 3).

Furthermore, MCMC calculation requires that we also specify the distance from the

detector to the binary. Because heavier total mass binaries give a higher SNR at the same

distance as a lighter total mass, we adjusted the the distances such that each injection would

have SNR⇡ 20. These values were found, essentially, by guess and check.

B. E↵ective Fisher Matrices

Using a python script a single simulation waveform was generated for each injection. A

template waveform was then generated for varied values ofMc and ⌘, and an overlap between

the two was taken. The resulting data was then plotted with Mathematica and a quadratic

fitting was found and used to generate an e↵ective Fisher Matrix. Because of the relatively

few number of data points � .995 it was di�cult to create a fitting to this scale, and thus

di�cult to create an e↵ective Fisher Matrix at an SNR= 20. Therefore each e↵ective Fisher

Matrix was calculated at an SNR= 10 (P � .99) (Fig. 4) and then the resulting standard
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— m1 ⌘

Mc 5082.4 -7904.1

⌘ -7904.1 13373.0

FIG. 4. e↵ective Fisher Matrix and confidence ellipse (contour plot of posterior at P = .99 [solid

line] and .995 [dotted line]) for reference injection (BH Mass = 10.0 solar mass and NS mass =1.4

solar mass).

Mc ⌘

0.00247 0.00152

FIG. 5. Standard Deviation calculated by e↵ective Fisher Matrix and scaled by .5

deviations were scaled by .5, thus giving us the standard deviation of the posterior for an

SNR= 20 (Fig. 5).

C. MCMC Results

Di�culties with the KISTI computing cluster prevented MCMC runs for all 6 injection

parameters up to the time of writing. Another paper, O’Shaughnessy et al. (in prep.), how-

ever, performed an MCMC run with injected parameters identical to our reference injection

(11.4 total mass). With this data we were able to perform the analysis we wanted for at

least one case.
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Mc ⌘

0.00235 0.00156

FIG. 6. Marginalized, 1-dimensional PDFs for the chirp mass and symmetric mass ratio (the red

line indicates the injected value of the parameter) and their standard deviations.

Using the cbcBayesPostProc.py script from the Ligo Algorithm Library we marginalized

the full, 9-dimensional posterior, down to a 1-dimensional PDF for each parameter from

which we found a standard deviation for the chirp mass and symmetric mass ratio (Fig. 6).

Using these values for standard deviation we computed the desired ratios for each pa-

rameter (Fig. 7).
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Mc ⌘

�effFM 0.00247 0.00152

�MCMC 0.00235 0.00156

�effFM

�MCMC
1.0508 0.969

FIG. 7. Standard Deviation calculated from e↵ective Fisher Matrix and MCMC results and their

ratio.

IV. CONCLUSION

The �effFM

�MCMC
⇡ 1 for each parameter indicates close agreement between the e↵FM and

MCMC results at SNR⇡ 20. This result is is similar to that of Rodriguez et al. (Fig. 1)

at 11.4 total mass. In the absence of more data, however, particularly at higher total mass

values, this result can only confirm that the e↵ective Fisher Matrix functions at least as well

as the standard Fisher Matrix with regards to agreement with MCMC.

At time of writing the KISTI computing cluster is undergoing repairs and upgrades.

When it is fully operation we plan to submit our full set of 12 jobs (6 parameter injections

both amplitude corrected to 3.5 pN order and uncorrected) for at least 3 runs each.
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