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Bayesian inference algorithms have been adopted to perform parameter estimation and model
selection for gravitational wave data from compact binary coalescence (CBC). However, their high
precision has a high computational cost, which is especially apparent when analyzing signals from
low mass systems. Here we show that parallelizing the Nested Sampling algorithm is a viable means
of reducing the required computational time and discuss the optimal settings necessary to do so.
We also produce an algorithm that variably resolves the frequency domain of an inspiral signal,
reducing the time required to produce the waveform by an order of magnitude, and explore its
applicability to the time domain. Both methods produced promising preliminary results that will
lead to further optimization and implementation into the analysis software for advanced detector

gravitational wave data.

I. INTRODUCTION

Mankind has observed the cosmos and sought to un-
derstand the underlying principles and mechanisms that
govern the universe. Until now our observations have
been of the electromagnetic spectrum, conventionally
classified by names such as radio, microwaves, infrared
light, visible light, ultraviolet light, x-rays and gamma
rays. Each of these forms of electromagnetic radiation
have led to the discovery of previously unknown phenom-
ena with consequences reaching far beyond the physics
community, such as the development of communication
and medical technology. However each of these forms of
radiation come from the same spectrum. A remaining
consequence of General Relativity is expected to open a
new window on the universe in the form of a completely
separate specturm of radiation which will forever change
the way in which it is observed—gravitational waves. The
first gravitational wave detection will undoubtedly prove
equal in historical significance to the ivention of the tele-
scope and produce many unexpected results, furthering
our understanding of the nature of the universe.

In the early twentieth century, physicist Albert Ein-
stein developed the Theory of Relativity. Until then
space, time, matter and energy were all considered sep-
arate entities. The theory suggests instead that space
and time are manifestations of the four-dimensional re-
ality in which we live known now as “spacetime” and
that mass and energy are equivalent notions. Relativity
arises from the principle that the speed of light is con-
stant and concludes that the gravitational interactions
we experience are not due to an independent force, but
rather the curved geometry of spacetime. The geometry
of spacetime, far from static, is capable of fluctuating in a
manner similar to the surface of water. Just as ripples are
produced when a stone is thrown into a pond, some phys-
ical systems are capable of sending ripples in spacetime
across the universe, which we denote gravitational waves.
Physicists from the Virgo and LIGO (Laser Interferom-

eteric Gravitational Wave Observatory) collaborations
have produced specialized Michelson interferometers de-
signed to detect the path length difference of their two
detector arms by using high-power lasers. The premise
behind these massive rulers is that a passing gravitational
wave will cause a fluctuation in the spacetime metric,
which will change the length of one detector arm with
respect to the other and produce recognizable patterns
in the output. Currently, these devices are undergoing
an upgrade to their second generation, “advanced” con-
figuration, and it is expected that the resulting boost in
sensitivity will enable physicists to measure the first ever
gravitational wave signals and open this new window on
the universe.

The first detected signals in ground based detectors
are expected to come from coalescing compact binaries
consisting of black holes (BBH), neutron stars (BNS) or
both (NSBH). The reason for this is due to the strong
quadrupole moment possessed by such systems, giving
off more gravitational radiation than any other source.
The detection rate for such interactions with second gen-
eration detectors is estimated at 40 events per year; how-
ever, the possible range is from 0.04 to 400 per year [2].
As the distances over which we may observe gravitational
radiation increase, these numbers will grow. Also as the
detectors improve, it is expected that we will eventually
be capable of observing burst signals from supernovae,
various stellar dynamical processes, and gain access to
new standard candles for measuring cosmological dis-
tances more accurately. Initial LIGO and Virgo detectors
were capable of measuring a signal in the visible band for
approximately 30 seconds, while the advanced configura-
tions will allow a signal to be visible for over 3 minutes.
This is due to the detection of lower frequencies through
improved detector technology, thus increasing the chirp
time [9] of the wave. The subsequent data available from
longer waveforms will allow for more accurate parameter
estimation. However, the added cost associated with the
increased volume of data is the increase in time required



to analyze it.

The framework currently used to analyze the data from
gravitational wave signals is known as the LIGO Algo-
rithm Library suite, or LALsuite, which houses Bayesian
inference software called LALInference for signal analy-
sis among other things. Bayesian inference is a math-
ematically straightforward approach to performing data
analysis and has been implemented to determine the vi-
ability of various hypotheses and perform parameter es-
timation by returning probability density functions rep-
resenting the likelihood of various values. Examples of
parameters in gravitational wave astronomy include sky
position, masses, distance to the source, and the magni-
tude and direction of the associated spin for each object
in the system. For every unique combination of these
and other parameters, a unique gravitational wave can
be produced. The downside to Bayesian inference is the
expensive computational cost of integrating over a high-
dimensional parameter space. To address this problem in
gravitational wave analysis, a method known as Nested
Sampling [7] has been implemented. It takes as inputs
the likelihood and prior density functions, maps the pa-
rameter space to one dimension, returns the evidence in-
tegral and samples from the posterior distribution using
Markov-Chain Monte Carlo (MCMC) integration meth-
ods (see [8]). For an overview of this method, see [4], and
for details on the current implementation of this proce-
dure in gravitational wave detection, see [6].

Further boosts in the computational efficiency of LAL-
Inference implementation of Nested Sampling could im-
prove the rate at which analysis of detector data is per-
formed. This paper investigates two separate efficiency
boosts to the LALInference software currently used by
the Compact Binary Coalescence (CBC) group and data
analysis of inspiral signals. First, we investigated an op-
timal parallelization of the implementation of the nested
sampling algorithm and also confirmed the accuracy of
the results given further parallelization. We also achieved
an increase in efficiency through the variable resolution
of the frequency domain. Current algorithms sample
the frequency domain waveform at a regular frequency,
meaning that at the high-frequencies, the waveform is
oversampled. We present an algorithm to break up the
frequency domain of waveforms and sample each broken
interval at its Nyquist time to decrease the number of
points to be processed. We also briefly discuss the the-
ory, expected efficiency boost and potential sources of
error of applying a similar approach to the time domain.

The paper is organized as follows: in Section II we
provide a review of concepts pertinent to gravitational
wave physics and binary inspiral signals; in Section ITI
we describe Bayesian inference and how it is used to ex-
tract and analyze data; Section IV describes the Nested
Sampling algorithm and elaborates on its implementation
in LALInference; Section V presents the procedure and
results of the parallelization performed; and Section VI
contains a detailed description of the variable resolution
algorithm as well as some preliminary results.

II. GRAVITATIONAL THEORY
A. General Relativity

General Relativity is a metric theory of gravity of that
expresses gravitational interactions through the geomet-
ric curvature of spacetime. In flat, Minkowski spacetime,
we can denote a line element representing the displace-
ment between two events in spacetime by the following

ds? = —2dt* + dz? + dy? + d2>. (1)

This can be generalized to systems of arbitrary curvature
described by any particular coordinate system through
the introduction of the metric tensor, g,,,. The compo-
nents of this tensor define the relationship between ds?
and the coordinate directions dx* and dz":

ds® = g datdz”. (2)

From this relationship, it is clear that the metric tensor
defines lengths in arbitrary coordinate systems.

General Relativity relates the stress-energy tensor 7},
to the Einstein tensor, G,,, and thus the lengths mea-
sured in an arbitrary coordinate system, through a sys-
tem of second order differential equations called the Ein-
stein field equations, which are

1 8rG

Gp,u = R,u,l/ - igHVR = CTNTMV7 (3)
where the Ricci tensor, R, and the Ricci scalar, R, are
contractions of the Riemann tensor. From this we can see
that the Einstein tensor contains information about the
curvature of a system as well as the lengths described by
the metric tensor. Therefore, the physical significance of
the field equations is that they connect the stress-energy
density to the curvature of spacetime produced by an
object. In short, the more massive an object, the greater
curvature it will produce and the stronger a gravitational
interaction it will have with other objects.

B. Gravitational Radiation

The Einstein field equations can be linearized by con-
sidering a metric perturbation, h,,, on a Minkowski met-
ric

Nz

G = M + Py i << 1. (4)

Writing the linearized Einstein field equations in terms
of the d’Alembertian operator, given by [ = 9,0, we
find
71671’GN
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From here, it is convenient to use harmonic gauge such
that 0"h,, = 0, which simplifies the expression above to
the form

Ohu +10,00° 0P h o — 0P O hyyy— 0P Oy p =

- —1671’GN
Ohpy = ——— T (6)



Outside the source where T}, = 0, the field equations
simplify even further to

Uhyw =0, (7)

which is immediately recognized as the wave equation

10 .
(—CQW + V2> By = 0. (8)

Therefore, we see that Einstein’s field equations give rise
to waves which travel at the speed of light, and it is this
wavelike nature that gives rise to the notion of gravita-
tional waves.

1. CBC Inspiral Signals

Binary coalescence is theorized to be the first astro-
physical source observed by advanced configuration grav-
itational wave detectors, and for this reason there is an
enormous effort in the field of General Relativity to bet-
ter understand their theoretical behavior. In this section,
we focus on deriving the form of a binary inspiral signal
from the Newtonian order approximation and present a
formula for the frequency of a gravitational wave as a
function of time for later use.
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FIG. 1: A circularly orbiting binary system

Observing the system described in figure 1, we see that
it consists of two masses, my, and mso, separated by a
distance R, orbiting their common center of mass in the
counterclockwise direction. The orbital plane intersects
the x-axis, making an angle ¢ with the observer’s line
of sight along the z-axis. Additionally, we see that the
objects are not rotating themselves, leaving us with a
total of nine parameters. Spinning objects would require
3 parameters each to describe their rotations, namely a

magnitude and two angles describing orintation, raising
the total number of parameters in such cases to 15. The
positions of the masses as a function of time, denoted
Z1(t), Z2(t), are given by

- mao A B
e mi + mo e( ) mi e( ) ( )
- —mj A B

= ———Ré(t) = —Ré(t 10
2 mi + mo e( ) mo 6( ) ( )

where é(t) = (cos(wt), sin(wt) cos(t), sin(wt) sin(z)) and
= mims/(mi + ms2) is the reduced mass.

The spatial tensor, representing the second moment of
the mass distribution, or quadrupole moment, and can
be written as

| o o

MY = C—Q/Too(t,f)xlxjd?’x = /p(t, B)zteld®z, (11)
where we rewrite 7%°/c? as the mass distribution p(t, ¥),
which can be expressed by

plt, @) = mq 8% (;?: - “Ré(t)) +mad® <f - “Ré(t)) .

mq ma
(12)

Likewise, the strain amplitude of a gravitational wave
measured in the approximately flat geometry far from
the source [1] is

2 d2M (1)

hij = r o dt?

(13)
Since the system system studied here is positioned such
that the observer is along the z axis, the spatial compo-
nents of the amplitude tensor are given by

hy hx O
hiT = hx —hy 0], (14)
0 0 0

where h and hy represent the two independent polariza-
tions. In terms of the spatial tensor, the +-polarization,
h4, and x-polarization M;; are given by

1Gn - .

hy = ;?f(M11—M22) (15)
2GN -

h>< = ;Ciileg. (16)

Therefore the relevant components of the spatial tensor
are given by

My, = pR?cos?(wt) (17)
My, = pR?sin®(wt) cos?(1) (18)
My = uR?cos(wt)sin(wt) cos(v). (19)

Substituting their second derivatives
My = —2pR*w?sin(2wt) cos(t) (20)
My = —2uR?*w? cos(2wt) (21)
My = 2uR?w? cos(2wt) cos? (1) (22)



into the polarization equations from equation 16, we find
that the polarizations obtain the following form

hy = —%%MRQQJZ cos(2wt)1LOSQ(L) (23)
hy = —%%MRQQJQ cos(¢) sin(2wt). (24)

By introducing the chirp mass, given by
= {mama)® (25)

(my + mg) /5’

and defining R = (GNMtot)l/?’w*Q/?’ from the relation-
ship between the Newtonian gravitational interaction and
the angular acceleration of the system, we find that

4 )3/3 1 2

hy = —;%ww“ws@wﬂm(%)
4 \5/3

hy = —;%ww/?’ws(b)sin@wﬂ. (27)

From these polarizations, it is possible to use the New-
tonian order approximation to derive the functional de-
pendence of gravitational wave frequency on time and
vice versa.

Due to the nature of the rotating system, the compo-
nents of the quadrupole tensor complete a cycle every
half a period. This means that the gravitational wave
frequency is given by

Worbit

fgw = 2forbit - T . (28)

We will define the characteristic radius, R, = 2GM../c?,
and wavelength A\ = ¢/ fg,,. Writing the polarizations in
terms of R, and A, including an arbitrary phase factor,
2¢, and evaluating at the retarded time, t,.;, we have

B][1]

1 2
h+ = ALS(L) COS(Qngwtret + 2¢) (29)

hx = Acos(t)sin(27 fgwtret + 2¢), (30)
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An analysis of the radiated power from this system will
lead toward the time-frequency functions we seek. First
note that the power emitted per unit solid angle is given
by

where

dP, r2c? .

gw _ (2 + 02 ).
d) 167TGN
Inserting the derived expressions for gravitational wave
polarizations, we find

dP,, 2 & [(GyMorfow\™?
b 20 (D) g, )

dsQ) ™ Gn

(32)
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where g(1) = (1+cos?(1)/2)? +cos?(¢). And by integrat-
ing over the sphere, we produce

[ dPgy o 32 (GMfu, "
Pgw—/ o dQ_ga (cg . (34)

Under the assumption that the binaries are on fixed
orbital paths, the non-relativistic energy of the sys-
tem is simply the sum of kinetic and potential energy,
E = Ey + E, = —Gymimgy/2R. The energy radiated
by gravitational waves requires energy and will force the
orbital radius to shrink as it is radiated. Noting that
wgrbit = GNM/R3, the R in the orbital energy expres-
sion may be eliminated

1/3
G2 MEn2f2,
Eorbit = - (1\/89 . (35)

Therefore the loss in orbital energy per unit time is given
by the energy flux

dE orbit

n Py, (36)

which produces the following expression for the time evo-
lution of gravitational wave frequency.

.96 Gy M \?
fnggﬂg/g <N) fg11/3. (37)

c3 w

Integrating this expression, we find that in terms of the
time before coalescence, T,ps = teoqr —t, the gravitational
wave frequency is given by

15 1\%/GMN\™
fgw(TObS)_ﬁ(256T0bs> ( 3 ) ) (38)

For implementation in the frequency domain, however,
we require the inverse of this function, tops(fgw), Which

tobs(fow) = % <(7ngw) (GCAgA)> _ (39)

These will be utilized later to determine the optimal sam-
pling frequency for systems of arbitrary mass given by the
Nyquist time and Nyquist frequency in the frequency and
time domains respectively. A plot of equation 38 for given
mass pairs are shown in figure 2.

wloo

III. BAYESIAN INFERENCE

Data analysis viewed as statistical inference consists
of two closely related goals: model selection and param-
eter estimation. The former seeks to decide which avail-
able model best matches collected data, while the latter
focuses on the determination of the governing parame-
ters on which a model depends. Bayesian inference offers
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FIG. 2: The frequency dependence on time for various pairs
of masses in units of solar mass. The second is a log-log scaled
plot of the inverse function. The binary system described by
these plotted functions evolves slowly at early times, but the
evolution accelerates dramatically as the system approaches
ISCO (Innermost Stable Circular Orbit).

a straightforward method to achieve both by exploring
each system parameter and hypothesized model as sepa-
rate dimensions in the parameter space and returning a
probability density function (PDF) associated with each.
In the case of gravitational wave signals produced by co-
alescing compact binaries, the analysis of gravitational
wave signals with Bayesian inference requires the explo-
ration of a minimum of nine dimensional parameters that
is performed at an exceedingly high computational cost.
However, the cost is driven down over time by new algo-
rithms and faster computers, increasing the practicality
of the application of the Bayesian framework in a growing
number of fields.

To derive Bayes theorem, the principle underlying all of
Bayesian inference, consider a set of hypotheses denoted

H={M;|i=1,..,N}, (40)

a vector of collected data, cf, and prior information, I.
From the concept of conditional probability and by the
law of total probability, we may construct Bayes theorem,
which states:

Poui = HEEEERD

—

where we read “P(H;|d)” as the probability of hypothesis
“” given collected data. By convention P(H;|I) is called
the prior probability, which encodes our confidence in a
hypothesis. The likelihood function, P((ﬂHi, I), denotes
how probable the data is given what we suspect theo-
retically, and the P(J]I ) is called the evidence, which

represents a sum over each hypothesis

P(d|I) =) P(d[H;.T), (42)

and behaves as a normalization factor. The posterior
probability on the left side of equation 41 may therefore
be calculated by comparing the prior and likelihood dis-
tributions against the evidence.

A. Model Selection

The Bayesian framework permits the comparison of
the viability of various hypotheses in the form of an odds
ratio. The procedure to determine this ratio is denoted
model selection or hypothesis testing. Consider Bayes
theorem applied to the posterior distributions of two sep-
arate hypotheses, H;, and H;. Comparing these two pos-
terior PDFs, we find

P(H;|d, )

P(H(DP(d[Hi, 1) _ P(HilI)
P(H;|DP(d|H;, 1) P(H;|)

P(#;1d, 1)

where B;; is called the Bayes factor and the ratio of pri-
ors preceeding this term is typically set to unity unless
there is reason to favor a particular hypothesis. The more
the data supports the H;, the larger the Bayes factor and
vice versa for H;. Convention suggests that values over
100 represent definitive of the relative validity of one hy-
pothesis versus another.

The computation of the Bayes factor is simple in the
case of hypotheses with no free parameters; however, in
the case of gravitational wave analysis, the set of vari-
able parameters makes this computation exceedingly dif-
ficult. To determine the Bayes factor in such a situation,
the likelihood must be marginalized over each of the pa-
rameters weighted by the prior, which produces what is
known as the evidence, Z, given by

—

7 = P(diH, 1) = / p(dlf, Mo, Dp(BH:, Dl (44)

Geo

In all but the most trivial cases, this integral is exceed-
ingly difficult to compute due to the high dimensionality
of the parameter space and the large intervals of values
that can be taken by the parameters themselves. This
computational challenge has been addressed in a paper
by Veitch and Vecchio, and further boosts to their meth-
ods are described here.

B. Parameter Estimation

As mentioned in our derivation of equations 38 and
39, parameters associated with producing a unique grav-
itational waveform are the two masses, time, sky posi-
tion, distance, phase of coalescence and three orientation



angles, which we express as part of a nine dimensional
parameter space

© = {M,v,tg,do, D, x,0,1,1}. (45)

Other parameters such as the 6 spin components of a [10]
binary system exist as we remove some of our simplifying
assumptions. The maximum number of parameters for
a coalescing compact binary is therefore 15, and though
finite, it nonetheless presents a computationally costly
challenge.

To determine the distribution of each of these parame-
ters, a procedure known as marginalization is performed.
In the case of parameter estimation, the process begins
by considering a subset of parameters, say 0_,'4 in the pa-
rameter space ©. The marginalized distribution for one
parameter may be calculated by “integrating out” the
other parameters

p(@aldH, T) = / p(Bald H, Ddfs.  (46)

Op

Then the expectation of a parameter may be determined
by computing the weighted average over its marginalized
distribution

(04) :/ Gap(Oald, H,1)dba, (47)
[SH

and the variance of the data is described by

—

0® = (0F) = (0)*. (48)

IV. NESTED SAMPLING

In 2004, Skilling developed the Nested Sampling al-
gorithm [7], which represented a novel shift the conven-
tional calculations of Bayesian inference. It it capable of
performing both model selection and parameter estima-
tion by taking as inputs the likelihood and prior distribu-
tions, sampling the parameter space using Markov-Chain
Monte Carlo (MCMC) methods, and returning the com-
puted evidence integral and samples from the posterior
distribution. We begin our explanation of the algorithm
by multiplying either side of bayes theorem (equation ?7?)
by the evidence,P(d|I), and establishing for each distri-
bution the following nomenclature:

P(dlo,PI1) = PAINPOdT)  (49)
Likelihood x Prior = Evidence x Posterior
L(©) xm(®) = Z x P(0©).

A. The Procedure

The algorithm begins by mapping the parameter space
to a one dimensional line. To perform this mapping, the
program simply extracts the likelihood of each value in

the prior and orders these values from greatest likelihood
to least over the interval (0,1). Next Niy,e samples, or
live points in the conventional nested sampling jargon,
are drawn uniformly from the prior and their likelihoods
are calculated.

e
N
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Parameter space 0

FIG. 3: This diagram depicts samples drawn from Area(Z)
which are equivalent to those drawn from the posterior dis-
tribution.

The next step is for the algorithm to remove the live
point farthest from 0, though it is stored along with
its likelihood for later use. In its place another is re-
sampled uniformly over the interval from 0 to the loca-
tion of the removed point. This process is repeated until
the sampled region has shrunk to very near 0 where the
likelihoods are very large. Each contour of equal likeli-
hood shrinks by a constant factor so that log(X);11 =
log(X); — 1/Niive, so for fewer live points, an instance
of this procedure will take less time than when utilizing
more.

Once the algorithm explores the parameter space suf-
ficiently by resampling many times and reaching a ter-
mination condition specified by the programmer, the al-
gorithm calculates the evidence integral

Z - / L(©)7(0)de. (50)
e
by defining the prior mass
X(\) = / 7(0)dO, (51)
L(©)>A
and performing the summation

Z

/ 1 L(X)dX (52)

Q

N
> LX)AX; (53)
=1

where N is the number of samples collected and
L(X(\) =M\

Next the area beneath Z is sampled which produces
samples from P(z) = L(z)/Z and thus from the poste-
rior P(Z| |d_: I). By simultaneously sampling the posterior
distribution and calculating the evidence integral, nested
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FIG. 4: A depiction of the nature of the repeated sampling
and movement of the samples to regions of increasing likeli-
hood.

sampling is highly efficient, greatly reducing the com-
putational overhead necessary in the exploration of high
dimensional parameter spaces. However, there remains
a great deal to be desired in terms of the computational
time , as data analyses of gravitational wave systems can
take two months or more.

(a)

Area Z

FIG. 5: A representation of the evidence integral and how
the posterior is sampled by sampling the area below the cal-
culated evidence integral at a negligible additional computa-
tional cost..

V. GAINING EFFICIENCY THROUGH
PARALLELIZATION

For a given number of live points, the nested sampling
procedure will converge on a maximum likelihood by a
time dependent on the rate at which the contours of equal
likelihood shrink. This means a computation performed
with a lower number of live points, though less accurate,
will be faster than for a larger number. We intend to
reduce the number of iterations necessary to complete
the algorithm by running multiple instances of the al-
gorithm in parallel with a lower number of live points
and analyze the effect of this reduction. The multiple
runs will encourage statistical accuracy while reducing
the overall computational cost. Our goal is to optimize
this procedure while maintaining a sufficient level accu-
racy by finding the most effective numbers of live points
to utilize.

A. Method

We first utilized a random number generator which
provided each run with a different random seed to induce
differences between each output. An integer with a large
number of factors was chosen arbitrarily to provide the
upper end of the test. We ran one instance at 1024, two
at 512, four at 256, and so on to a minimum number of 16
live points where the algorithm no longer produced suf-
ficiently accurate results. Instances using factors of 1200
live points to a minimum of 16 and 256 to a minimum of
64 were also performed following the same scheme. Next,
we organized the posterior samples from each parallel run
by weighting and resampling within each run. Once col-
lected, we merged each of the parallel runs by weighting
each run according to their own evidence estimates and
drew posterior samples from all runs by drawing from the
collated weighted parallel posterior samples.

The post-processing procedure for the parallelized in-
stances generated plots of the probability distributions of
each parameter and the covariance matrix of the param-
eters in each run individually. It then merged the data
from each instance using a common number of live points
and ploted the data together for comparison. The poste-
rior samples from each of the runs were then combined to
generate a figure of merit for the relative accuracy given
various numbers of Njye. The merged files were be com-
pared against each other to determine which numbers of
live points required the least computational time. Once
generated, the efficiency and accuracy figures of merit
were compared, and an optimal range of live points de-
termined.

B. Results

Observing the relative rates at which the nested sam-
pling algorithm converges on the most likely parameter
values produces a glempse of the efficiency boost gained
by decreasing the number of live points. Figures 6 and 7
show how the reduction in live points more sparsely sam-
ples the parameter space and generate a mental picture
of how nested sampling discovers and explores regions of
increasing likelihood. The parameter shown here is the
chirp mass, which is highly sensitive to changes in the
waveform generation inputs. Besides the pictorial repre-
sentation, these images provide a quantitative into the
reduction in computational cost. Noting the horizontal
axes which represent the number of iterations undergone
by the algorithm up to that sample, computations with
lower numbers of live points do indeed require far fewer
computations and thus take less time.

The initial parallelization containing 1024 live points
and factors thereof produced the following curve describ-
ing the number of posterior samples versus the number of
live points per run. This plot also includes a more highly
resolved segment where we suspected the algorithm to
perform most effificnely. This is explained in the stas-
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FIG. 6: Samples drawn during nested sampling instance run
with 1200 live points. Here the x-axis denotes the number
of iterations performed by the algorithm, while the y-axis
describes the parameter estimate.
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FIG. 7: Samples drawn during nested sampling instance run
with 300 live points. Here the x-axis denotes the number
of iterations performed by the algorithm, while the y-axis
describes the parameter estimate.

tical variance of the time to perform the likelihood and
thus maintains the increasing trend as Njye grows.
From the sampling, is clear that an efficiency boost
can be generated by cutting the number of live points.
However, such a procedure will not produce viable results
when run with fewer than 64 live points. This is seen in
the drastic decrease in posterior samples, and thus accu-
racy, with a relatively small gain in efficiency. This is in
part because the amount of time to complete a run with
half the number of live points does not correspond to
half the time to complete that of the larger number. In-
stead instances run with fewer live points require roughly
75% of the computational time of the instances contain-
ing twice as many live points, which is seen in figure
8. Since accuracy is lost as the number of live points is
decreased, the standard deviation of our parameter esti-
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FIG. 8: A plot of posterior samples versus the number of
live points used to perform the nested sampling algorithm.
For each 50% reduction in Njve, approximately 75% of the
posterior samples are retained.

mates also increases as can be observed in figures 11, 12,
9, and 10. At a sufficiently small number of live points,
accurate physics can no longer be performed.

Continuing to analyze the accuracy of the parameter
estimates as we decrease the number of live points, it
is beneficial to analyze the distributions of each of the
merged parallel runs. Similarity between the histograms
from figures 9 and 10 shows that parallelization main-
tained a significant amount of accuracy in the waveform
parameters estimated by the algorithm. Figures 9 and 10
depict the probability distributions for the values of the
chirp mass. It was expected that as this number dimin-
ished, the variance would increase dramatically; however
that was not observed. Though the spread of the data for
relatively small values was larger than for large numbers
of live points, the rate at which the spread increased was
slower than expected.

Figures 11 12 depict the log Bayes factors calculated
by the parallel instances containing the same numbers of
live points. The range of the log Bayes factor and the
accuracy of parameter estimates are highly correlated.
At lower numbers of live points, the variance of the log
Bayes factors becomes too large, meaning the algorithm
will not converge on as consistent a quantity. However,
these histograms show that there is a range inside 512
and 128 which produced sufficient accuracy to extract
physics from gravitational wave signals.

Comparing the cumulative distributions of the chirp
mass calculated with varying numbers of live points, we
produced figure 13 and 14, the latter of which is a range
of live points within the larger range. As is visible in
the plots, there is little difference in the distributions
calculated for different numbers of live points. Each run
is slightly different; however, merging all of the output
files for common numbers of live points, we see that the
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FIG. 9: A probability density function for chirp mass param-
eter calculated using 1200 live points.
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FIG. 10: A probability density function for chirp mass pa-
rameter calculated using 300 live points.

average of each has a nice overlap. This is precisely what
we desired when the problem was defined.

Figure 15 describes the computational time versus the
number of live points for this set of runs. There is a clear
trend seen here; however, the greatest improvement rel-
ative to the preceding higher number of live points was
found in the transition between 300 and 200. Based on
the number of posterior samples and the efficiency boost
in computational time, the optimal range of live point
numbers falls between 250 and 300. Here it was deter-
mined that we produced the fastest result while main-
taining sufficient accuracy to produce viable parameter
estimates and allow us to maintain confidence in future
applicatins of this approach.
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FIG. 11: A histogram of the 2 Instances with 512 Live Points.
Here the log Bayes factor was 545.17 + 0.06.
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FIG. 12: A histogram of the 8 Instances with 128 Live Points.
Here the log Bayes factor was 545.71 + 0.67.

VI. VARIABLE RESOLUTION OF THE
FREQUENCY DOMAIN

At the most basic level, any attempt to better resolve
of a set of data will cost computational time, but produce
improved accuracy. The opposite is true for lower reso-
lutions. There is a limit to how much or little we may
resolve a function, given by the Nyquist frequency. The
ideal resolution is achieved when a function is sampled at
this rate, whereas sampling above this rate will produce
no improvement in accuracy and a loss in efficiency and
below it will produce effects known as aliasing where a
waveform can no longer be uniquely determined.

When we refer to sampling in this section, we mean
the variety performed in the reconstruction of a ban-
dlimited signal given by the Sampling Theorem. The
Nyquist frequency, coming directly from the this theo-
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FIG. 14: Cumulative distribution for chirp mass parameter
given merged parallel instances from a small range of live
points

rem, states that a signal, ¢(f), bandlimited by some fre-
quency, F', may be completely determined by a series
of its ordinates spaced at a frequency of F/2 Hz. The
rate at which these ordinates occur is called the sampling
frequency, and the exact frequency at which a signal is
completely determined is called the Nyquist frequency.
A subsequent result of this theorem is that a frequency
domain waveform containing no amplitudes greater than
T is completely determined by giving its ordinates at a
series of abscissas spaced 1/(2T) = f nyquist Hz apart.
Since this is a frequency domain waveform, and we have
used the inverse of the function ¢(f), we could think of
this sampling frequency as the Nyquist time instead of
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FIG. 15: A plot of the total computational time at various
numbers of live points. There is an enormous redution pro-
duced by the first reduction of 50%. Further reductions pro-
duce relatively smaller reduction in computational time.

frequency; however, we have opted to utilize a notation
mostly consistent signal processing conventions (see [5]).

The current algorithm utilizes constant resolution
function stationed well above the Nyquist frequency for
all but the lowest frequency. Instead, using a function
which returns the Nyquist frequency for each point on
the waveform we wish to generate and smapling at this
rate would be more efficient. Our goal is thus to exploit
the monotonically decreasing nature of the Nyquist fre-
quency of an inspiral signal and optimize this aspect of
waveform generation. This will result in sampling at a
high rate at low frequencies and down-sampling gradu-
ally as we reach higher frequencies.

A. Method

The first step toward optimizing the resolution of the
frequency domain waveform through variable resolution
is to determine the Nyquist frequency at every point in
a theoretical frequency domain waveform. We do this by
introducing the functional dependence of gravitational
wave frequency on time observed which is given by equa-
tion 38. Given particular systems of BNS, BBH and
NSBH, we may establish scenarios for different mass ra-
tios which result in a different time dependence on fre-
quency and vice versa. The largest amplitude for this
function occurs when the smallest chirp mass is imple-
mented, which for the sake of gravitational wave analysis
is a binary system of neutron stars, each weighing 1Mg.
Such a system establishes a worst-case scenario for sam-
pling rates and was used in our subsequent calculations.
The plot shown in figure 39 describe the functional de-
pendence of time on frequency and vice versa given nine
different mass combinations listed in solar masses. By



using this plotted equation we may determine the corre-
sponding Nyquist sampling frequency by calculating

1
tobs (fgw) ’ (54)

fnyq =

N | =

and thereby optimize the sampling rate for arbitrary
mass CBC systems. Graphically this is shown in fig-
ure 16, where we can see that at each frequency at which
we change sampling rates, we may simply take twice the
value of the function, the inverse of which is the ideal
sampling rate.

We have chosen to break frequency domain waveforms
according to an optimization that minimizes the num-
ber of samples as a function of the frequencies at which
the function is broken. This means that for any chosen
number of breaks, f1, fo,..., far, we may find the optimal
frequencies at which to change the sampling rate and per-
form calculations with optimal efficiency. For this num-
ber of breaks, the function of the number of samples we
will minimize is given by

. f1*fmin flfo
N(f1, fas s fm) = Frga Fmin) * Fryq(f1) i

fN _fol + fma:v _fIM
tnyq(fN—l) fnyq(fM) ’

+

where 0 = Afpyg = 1/(27(fgw) + 1) is the nyquist
frequency given fg,, and utilizes equation 39. In words
the length of each band divided by the rate at which
it is sampled, produces the number of samples for each
band. Summing this over each band produces the number
of samples required to construct the waveform, so the
minimum of this function returns the minimum number
of samples required.

In the continuous case and with arbitrary computing
power, it would be advisable to make an enormous num-
ber of breaks in the frequency domain so as to always
sample waveform at an optimal rate. However, with
computational limitations, it is more efficient to break
a relatively small number of times because the time re-
quired to recompose the bands becomes a significant as
the number of breaks increases.

Next we recompose the waveform by placing the bands
side by side. This is achievable due to the analytic na-
ture of the frequency domain, theoretically guaranteed to
produce a perfect match, though this was not observed in
our results. Here we have utilized linear interpolation to
produce a sufficient match against a waveform sampled
at a constant rate. Alternatives such as sinc and spline
interpolation methods were considered; however, the na-
ture of this problem led naturally to a linear procedure.
The fully composed waveform was then compared against
one at a constant sampling rate. Results of this imple-
mentation follow.
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FIG. 16: An example of how a frequency domain waveform
is broken and sampled. The location of each break is deter-
mined by the minimization of the number of samples as a
function of frequency breaks 1 through 5 shown in equation
55, and the sampling rate for each band is determined by the
nyquist frequency given by the inverse of twice the maximum
amplitude of equation 39.

B. Results

Using linear interpolation between the reference wave-
form at a constant sampling rate and our broken wave-
forms with various numbers of bands, the following wave-
form matches were calculated. Note that the one band
case is not a perfect match. This is due to error in-
duced by the interpolation method itself, which propa-
gates through the other matches as well. Despite this
small error, the matches remain excellent for the pur-
poses of signal analysis.

[Bands[Percent Match| Time (d+h:m:s)]

1 99.9997 ~4409:00:00
2 99.9541 3+16:28:54
3 99.7589 2423:22:12
4 99.5351 2+18:19:39
5 99.3865 24+17:30:19

FIG. 17: Preliminary results showing the greatly diminished
computational time at little cost to accuracy

In terms of computational efficiency gain, it is clear
that variable resolution will prove useful in future grav-
itational wave analysis. The results shown here suggest
that a frequency domain broken into 5 bands will produce
a nearly 50% reduction in computational time. Since
these results are for only short wavefoms, it is expected
that this reduction will be further amplified as the wave-
form length increases. A beneficial test for the future
would be to test a waveform of the same length we ex-
pect our first detection to be. This would allow us to



understand just how long a detection will take to ana-
lyze and ultimately publicize.
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FIG. 18: Three overlayed frequency domain waveforms. One
is sampled at a constant rate, another is composed without
interpolation, and another uses linear interpolation to recon-
nect each of the bands. The linear interpolated match is seen
in VIB.
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FIG. 19: Time required to generate the frequency domain
waveform

VII. TOWARDS A TIME DOMAIN
IMPLENTATION

A supplementary goal is to apply the variable resolu-
tion approach to the time domain. A large portion of
the computational time required to complete a nested
sampling instance is invested in the generation of wave-
forms. The most time consuming waves to generate
are time domain waveforms because they are not ana-
lytic. They present a greater computational challenge be-
cause they require numerically solving a system of highly-
coupled second-order differential equations and require
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the matching the broken waveforms in a consinuous and
differentiable manner in order to reduce inconsistencies
brought about by transforming between the time and
frequency domains. While the former explains why the
matches are imperfect, the latter expresses why this is
a hurdle which must be overcome to produce accurate
results.

In principle, the time domain waveform is very sim-
ilar to the frequency domain except it is reversed and
increases in amplitude from some initial time to ISCO.
This means that the strategy initially implemented to
break the frequency domain into multiple intervals must
be reversed so the minimization of the new function N ()
produces the optimal times at which the time domain
should be broken from greatest to least. We may write
this function as follows:

trsco—tn | tnN —tn—1
N(t1,to,.tn) = + + ...
(b, E2 ~) fryq(tN) Jryq(tn—1)
n to —ty t1 — tmin
fnyq(t2) fnyq(tl)

With the function N(¢1,ts,...,tx) established, it is easy
to consider an implementation in the time domain using
the same framework developed for the frequency domain.
First we would minimize this function for the number of
time domain breaks we desire, sample at the Nyquist fre-
quency (instead of Nyquist time) for the largest time am-
plitude inside the band, and then compose the resulting
pieces of the waveform.

However, the current code has the following limita-
tion which will )have to be addressed before this concept
is used in LALInference. The waveform generator pro-
duces waves from some initial frequency all the way to
ISCO. This is not a problem, except that it results in
a waste of computational resources when using a multi-
band framework. Instead, we suggest the implementation
of code which allows for a certain maximum frequency to
be specified and the waveform calculated only for that
region.

Once this is addressed, we expect there will be a prob-
lem matching the broken waveforms. The frequency do-
main is analytic, meaning that producing a match from
the broken waveforms is relatively easy and, in fact,
should be perfect except for interpolation generated er-
rors. The time domain waveform, on the other hand, is
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FIG. 20: An example time domain imspiral waveform.



found by solving a system of coupled differential equa-
tions. Changing boundary conditions such as the end-
points of the interval over which you seek a solution can
cause changes in the endpoints. Even if only a slight dif-
ference between the end of one band and the beginning of
the next is produced, this will produce what is known as
Gibbs phenomenon when the function undergoes a fast
Fourier transform. To reduce this effect, we suggest the
eventual implementation of a convolution of a small over-
lap of adjacent waveform bands. This would smooth the
function, thereby encouraging continuity and making the
function analytic at points which would not otherwise be
differentiable.

VIII. CONCLUSIONS

The initial goals set for this project were to analyze
parallel instances of the nested sampling to obtain an
optimal configuration and to study and implement a vari-
able resolution algorithm for more efficient waveform gen-
eration. From the procedure desceibed here, we deter-
mined that the nested sampling algorithm could indeed
be made more efficient by the implementation of parallel
processing as well as by variable resolution of the fre-
quency domain. There was also progress made toward
the implementation of the algorithm in the time domain;
however, those results will be saved for a future paper
combining the results from this research and a more de-
tailed analysis of the behavior of the multiple band ap-
proach in the time domain.

Regarding the parallelization performed, we deter-
mined that the optimal range of live points is between
250 to 300 with a minimum of 4 instances of nested sam-
pling should be implemented with these values to perform
meaningful statistics. There is too significant a loss in ac-
curacy when the number is decreased below this value.
Even if a large number of instances were run simultane-
ously, the results would be less meaningful than a smaller
but more accurately computed group. Since the num-
ber of posterior samples drawn from runs containing 200
to 256 live points is approximately 50% of the number
drawn from a run containing 1000 to 1024, this means
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that running, say, 4 instances with 250 live points will
produce a 2.25% increase in the total number of pos-
terior samples, meaning a more accurate result can be
produced at a lower computatonal cost.

Similarly, results from the variable resolution algo-
rithm indicate that it is possible to gain efficiency by
breaking up the frequency domain waveform to perform
analysis. The results shown above are only preliminary,
as they utilize short waveforms for the sake of determin-
ing results quickly. To test the full potential of this ap-
proach, it will be necessary to test longer waveforms and
also determine the effect of louder signals with higher
signal to noise ratios. If the pattern found in table VIB
remains consistant for longer and louder waveforms, it
is highly likely that the algorithm will cut the time re-
quired to perform nested sampling in half. We feel that
the development of a similar algorithm for the time do-
main would come full circle in boosting efficiency under
by means of this framework.

A combination of parallelization and variable resolu-
tion would clearly be a beneficial application of these
newly developed tools. A test of these in unison will help
determie a new time frame within which we will be able
to publish results from the first ever gravitational wave
detection expected from the advanced-configuration de-
tectors. With these procedures in hand, it is hoped that
we will become closer to the goal time frame of a publi-
cation three months after the detection is made.
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