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Abstract

One candidate source for detectable gravitational waves is the core-collapse super-

nova. Unfortunately, no definitive model of a supernova gravitational waveforms has

yet been found through either numerical or analytical methods. It is therefore desir-

able to have methods of detecting gravitational waves from these sources without a

priori knowledge of the signal’s appearance. Previous work has developed these codes,

but has not thoroughly assessed their e�cacy or examined methods of improving their

performance. This project endeavored to do that, and met with limited success. We

examined briefly the e↵ects of retaining greater numbers of clusters of time-frequency

pixels, but focused our e↵orts predominantly on establishing optimal percentages of

retained time-frequency pixels, finding approximate optima for percentile in both the

single and halo-core cases.
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1 Introduction

Advanced LIGO and Advanced VIRGO detectors are expected to come on line as early as
next year. Therefore, it is important that programs exist to robustly analyze data from a
number of sources. One such source is core-collapse supernovae. This source is unusual in
that no complete, reliable model for the waveforms exists. As a result, we must establish
e↵ective reconstruction programs which can find these signals without a priori knowledge of
their appearance. In this work, we will present analysis of one such reconstruction script
and the manners in which it can be improved.

2 Gravitational Wave Bursts & Supernovae

Einstein’s theory of general relativity posits the existence of gravitational waves arising from
sources with time-dependent mass quadrupole moments. These are transverse waves with
two polarizations, plus (+) and cross (⇥). Additionally, in a linearized theory based on flat
spacetime, these waves follow an ordinary wave equation [1].

Some sources of gravitational waves are expected to emit continuous signals, but oth-
ers are expected to emit GW bursts. These burst sources include supernovae, binary black
hole or neutron star mergers, and gamma ray bursts, which are also examples of gravita-
tional collapse. A deeper understanding of these sources could lead to much advancement in
relativistic astrophysics, making the study of burst sources a highly desirable undertaking.
Additionally, these source are believed to occur at a rate of about 30 per year, increasing
the probability of their detection [3], [2].

A supernova occurs when the electron degenerate iron core of a star with a zero age
main sequence mass between eight and one hundred times the mass of the sun exceeds its
e↵ective Chandrasekhar mass and becomes gravitationally unstable. At this time, the core
collapses, meaning the inner core material is compressed to nuclear densities. Then, the
nuclear equation of state induces a core bounce, which sends a shock wave out from the core.
This shock wave loses energy quickly, though. If it is revived, it will finish leaving the stellar
envelope, explode the star in a supernova, and ultimately create a neutron star. If it is not
revived, the star will just collapse again and become a black hole. (This process is incredibly
energetic, but only 1 % of that energy is emitted as light; the rest is neutrino emission) [1].

The largest question in understanding supernovae is how gravitational energy is trans-
ferred to revive the shock wave. At present, there are three main theories (the neutrino
mechanism, the magneto-rotational mechanism, and the acoustic mechanism). Of course,
observational data is desirable to distinguish between the theories. This cannot easily be
obtained, because traditional visual astronomy cannot be used. Therefore, the big questions
in supernovae research require gravitational wave observation [1]. Gravitational wave emis-
sion is expected from rotating collapse and bounce, non-axisymmetric rotational instabilities,
post-bounce convective overturn/SASI and PNS pulsations [1].

For a process as complicated as the core-collapse of a supernovae solving the Einstein
equations and the radiation-magnetohydrodynamics equations require complex numerical
modeling. A full model of the stellar core collapse and postbounce supernova core evolution
would account for all length scales, be three-dimensional, and include full proper treat-
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ment of general relativity, magneto-hydrodynamics, neutrino transport, and EOS nuclear
and neutrino interactions. Unfortunately, the numerical modeling is so complicated that it
is impossible to create a full model with present computational technology. A single full
simulation would require thousands of cores on computers better than the ones now existing
[1].

There are a number of simplifications which can be introduced to allow the creation of
partial models. However, we cannot assume that a real gravitational wave signal would look
just like these approximate models. Detection of core-collapse signals is possible (though
not especially likely) during advanced LIGO operation, so we need to be able to reconstruct
gravitational wave signals from core-collapse supernovae in the absence of a detailed model
of the waveform.

3 Reconstruction Codes

3.1 X-Pipeline Analysis Processes

In order to understand possible improvements to the waveform reconstruction process, we
must first understand the mathematics of waveform reconstruction. Therefore, we begin
from provided antenna response functions and data streams and derive the reconstruction
process.

The output (d̃) of a gravitational wave detector (↵) is given by an equation like Equation
1, where F+

↵ and F⇥
↵ are antenna response functions and n↵ is the noise in the signal.

d↵(t+�t↵(⌦̂)) = F+
↵ (⌦̂) + F⇥

↵ (⌦̂)h⇥(t) + n↵(t+�t↵(⌦̂)) (1)

Each individual detector takes little notice of the sky position of the signals it observes.
However, the detectors are spread out over the earth to allow for accurate triangulation of
sky positions. This separation is visible in the data collected by the detectors as a time delay
between each detector. When conducting analysis, we want to be sure we see the same thing
at the same time on each detector. Therefore, we introduce a time shift relative to a fixed
point r0, prior to analysis. This shift is given by Equation 2, and it is assumed into further
discussion.

�t↵(⌦̂) =
1

c
(r0 � r↵) · ⌦̂ (2)

Our actual data is discrete, so we use discrete notation in our analyses. The frequency
and time series are related by a Fourier transform.

x̃[k] =
N�1X

j=0

x[j]e�i2⇡jk/N

x[j] =
1

N

N�1X

k=0

x̃[k]ei2⇡jk/N

(3)
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For our own convenience, we also define our signal, our noise, and our antenna response
figures as noise-weighted quantities

d̃w↵[k] =
d̃↵[k]q
N
2 S↵[k]

ñw↵[k] =
ñ↵[k]q
N
2 S↵[k]

F̃+,⇥
w↵ =

F+,⇥
↵ (⌦̂)q
N
2 S↵[k]

(4)

These re-definitions allow us to re-write Equation 1 in a much more manageable format
as

d̃ = Fh̃+ ñ (5)

where the data, antenna function, and noise are noise-weighted as in Equation 4 with an
element for each detector in use and where h̃ is the gravitational wave and is a vector with
one element for the + polarization and one element for the ⇥ polarization.

Once we are in possession of equations for detector output, we need to establish likelihood
ratios.

We begin this process by coming up with an expression for the probability of finding
some gravitational wave h̃ in some stream of data h̃. To determine this probability, we
assume (somewhat erroneously) a Gaussian noise distribution. Therefore, for one detector,
the probability is given by Equation 6 and for a matrix n of D detectors by Equation 7.

P (n) =
1p
2⇡

exp[
�|n|2

2
] (6)

P (n) =
1

p
2⇡

D exp[
�nTn

2
] (7)

Solving Equation 5 for n yields n = d̃� Fh̃. Substituting this into Equation 7 gives us
the probability of finding some signal h̃ in some data stream d̃, as shown in Equation 8.

P (d̃|h̃) = 1
p
2⇡

D exp

"
�(d̃� Fh̃)T (d̃� Fh̃)

2

#
(8)

Equation 8 becomes

P ({d̃}|{h̃}) = 1
p
2⇡

Dnp
exp

"
�1

2

X

k

⇣
d̃[k]� F[k]h̃)[k])T (d̃[k]� F[k]h̃[k])

⌘#
(9)

for a set of Np d̃ values, {d̃}.
In the case where there is no signal, this reduces to

P (n) =
1

p
2⇡

D exp

"
�d̃T d̃

2

#
(10)
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which is identical to the noise only case considered previously.
The likelihood ratio is defined as the log-ratio of the probability of finding something and

the probability of finding nothing, as given below by Equation 11:

L ⌘ ln
P ({d̃}|{h̃})
P ({d̃}|{0})

=
1

2

X

k

h
|d̃|2 � |d̃� Fh̃|2

i
. (11)

If waveform h̃ is known in advance, finding L is straightforward. However, the entire
problem lies in that we do not know what h̃ is. Therefore, we find the best fit waveform to
maximize likelihood ratio by solving

0 =
@L

@h̃
|h̃=h̃max

(12)

for h̃max. The result is a linear equation,

h̃max = (F†F)�1 F† d̃ (13)

where F is still the antenna response function, d̃ is still the data stream from the detector,
and † is the complex conjugate transpose.

Then, we can use a projection operator PGW ⌘ F
�
F†F

��1
F† and find the standard

likelihood:
ESL ⌘ 2Lh̃max =

X

k

d̃†PGW d̃. (14)

Projection operator PGW projects the data from the detector into the + and ⇥ plane.
There is another projection operator known as the null projection operator, orthogonal

to PGW , and given by Pnull ⌘ I � PGW which can cancel out the gravitational wave signal
in the data.

Projection operator Pnull gives rise to the null energy, which is the minimum amount of
energy in the whitened data that does not allow for a gravitational wave at that point. Null
energy is

Enull ⌘ Etot � ESL =
X

k

d̃† Pnull d̃ (15)

where ESL is from Equation 14, Etot is Etot =
P

k |d̃|2, and d̃ is the data stream.
This projection operator analysis can be useful in that Enull allows us to remove some

portion of the noise without a↵ecting the actual signal.
The default basis for the detector data space (that formed by the single-detector strains)

is not the optimal basis for detection statistics. Therefore, we choose to convert to a dominant
polarization frame based in the two-dimensional subspace defined by F+ and F⇥ which allows
us to have a direction in which the detectors have maximum antenna response orthogonal
to a direction with minimum antenna response.

We begin constructing this dominant polarization frame (DPF) by writing the antenna
response functions related by a polarization angle  as shown in Equations 16 and 17:

F+( ) = cos 2 F+(0) + sin 2 F⇥(0) (16)
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F⇥( ) = � sin 2 F+(0) + cos 2 F⇥(0). (17)

We then rotate the polarization frame with the angle

 DP (⌦̂, k) =
1

4
atan2(2F+(0) · F⇥(0), |F+(0)|2 � |F⇥(0)|2 (18)

where atan2(y,x) is the arctangent over (⇡, ⇡].
We now can write unit vectors e+ ⌘ f+

|f+| and e⇥ ⌘ f⇥

|f⇥| , and from there we can re-write
all of our other quantities.

The projection operator is now

PGW = e+e+
†
+ e⇥e⇥

†
(19)

and the standard likelihood is now

ESL =
X

k

h
|e+ · d̃|2 + |e⇥ · d̃|2

i
. (20)

Additionally, we can find the plus and cross energies, which are

E+ ⌘
X

k

|e+ · d̃|2 (21)

and
E⇥ ⌘

X

k

|e⇥ · d̃|2 (22)

respectively.
Once we have these quantities, we can determine their statistical properties. All these

energies follow a non-central �2 distribution of the form

2E �2
2NpDproj

(�) (23)

where E is energy, Np is number of pixels, Dproj is the number of projection dimensions, and
� is a non-centrality parameter.

This non-centrality parameter � is given by

�+ = 2
X

k

|f+|2|h+|2, (24)

�⇥ = 2
X

k

|f⇥|2|h⇥|2, (25)

and
�SL = 2

X

k

⇥
|f+|2|h+|2 + |f⇥|2|h⇥|2

⇤
(26)

for the plus, cross, and standard likelihoods.
By using the mean and standard deviation of the noncentral �2distribution, we can state

that a gravitational wave is expected when

�p
2NpDproj

>> 1 (27)
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.
This ratio can be very helpful in establishing why a program is failing to detect injected

gravitational waves.
This lengthy definition underlies the X-Pipeline set of functions, which were already

made prior to this project and many of which we used in our reconstructions. For more
information, see the appropriate X-Pipeline documentation [3].

3.2 Pre-made Functions

During this project, we drew heavily on pre-made functions in X-Pipeline. These functions
will not be directly discussed here, but discussion of them can be found in the appropriate
X-Pipeline documentation [3].

3.3 script wfr

The primary code we used to conduct our reconstruction analysis was a MATLAB script
called script wfr.m. It is based in X-Pipeline and uses X-Pipeline functions extensively.

Before running the script, the user sets a series of parameters. Users select data pa-
rameters and noise models; we used LIGO Hanford 1, LIGO Livingston, and VIRGO but
assumed a Gaussian version of the LIGO noise model for all three detectors. Users can also
have dynamic noise creation, but we did not use that option. Users set a data duration and
sample rate and minimum and maximum frequencies of interest. We use a data duration of
64 seconds and a minimum frequency of interest 40 Hz for all analyses. We predominantly
used a sample rate of 1024 Hz and maximum frequencies of 450 Hz for most of our analyses.
The notable exception is the halo-core grid created near the end. There we used a data
sample rate of 2048 Hz and a maximum frequency of interest of 1000 Hz. The user may also
choose to turn noise on and o↵ and, in our edited version, how many time-frequency clusters
to keep.

The next parameters are the wavelet decomposition parameters: the level of wavelet
decomposition, the wavelet family, and the entropy type. We used a level of 6, wavelet
‘dmey,’ and entropy ‘shannon’ for the whole project. After them, the user sets the wavelet
reconstruction parameters: an energy for pixel thresholding, the percentile of wavelet pixels
to zero out, and the expected gravitational wave strain amplitude. The script defaulted to
standard energy, an amplitude of 1⇥ 10�21, and a percentile of 97.

Percentile can be either a single value (known as the single case), in which that percent
of time-frequency pixels are zeroed out during the reconstruction, or it can be a pair of
values (known as the halo-core case). In the halo-core case, some lower (halo) percentile
value is used to eliminate an initial set of values. Then, these values are refined farther using
the higher core value. Only those values which are adjacent to pixels greater than the core
values are retained. While it is not the default operation of the program, we also tested the
halo-core variation extensively.

The user then sets injection parameters. Users must choose the deterministic or random
case. The deterministic case injects a waveform with fixed parameters and allows the user
to examine it. The random case injects a specified number of signals with randomized
parameters and allows the user to examine more the overall than individual e↵ects. We
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used only the deterministic case, so we will not further discuss the random case. In the
deterministic case, the user must specify a signal, its the root sum square amplitude for the
plus and cross polarizations (hrssp and hrssc), and a waveform model. The user must also
specify polarization angles and sky position.

Once all the parameters are set, the program autonomously generates a waveform and
a noise spectrum, calculates the antenna response functions, calculates the time delay due
to sky position, and injects and applies these quantities. Then, the program time shifts
the data and calls the function hreconstruction, using parameters provided by the user, and
reconstructs the waveform.

After the waveform is reconstructed, script wfr evaluates the reconstruction. It calculates
the inner product of the reconstructed waveform and the injected waveform and divides by
the magnitude of the injected waveform, for both the plus and cross polarizations as shown
in Equation 28:

match =
hhrec|hinji
hhinj|hinji

(28)

This value is known as the match in the plus and cross and is the most reliable indicator of
the e↵ectiveness of the reconstruction program.

Finally, script wfr plots the injected and reconstructed waveform to allow for visual com-
parison.

3.4 hreconstruction

hreconstruction is a MATLAB function for a Tikhonov-regulated gravitational waveform
estimator. It takes in an array of detector data, a data structure with minimum, maximum
and Nyquist frequencies, a wavelet decomposition structure, a noise spectrum name, antenna
response functions, a gravitational wave strain amplitude, an energy threshold, a one or two
element percentile vector, and a number of clusters to keep (in our revised variation).

It first performs a wave packet decomposition. Then it constructs a vector to hold the
central frequency of each wavelet coe�cient and re-orders this vector into ascending regions.
It next eliminates areas of time-frequency maps which are likely to be highly un-reliable,
such as the first and last 10% of time bins.

The function then computes the one-sided power noise spectrum based on the given
theoretical noise curve. Next, the function double-whitens the data by dividing each sample
by its noise amplitude and noise power.

The function constructs a map of time-frequency pixels based on a chosen detection
statistic, zeros a number of pixels appropriate to the given percentile value, and forms clusters
of the remaining values. Clusters are formed from locations where the nearest neighbor of
a valid pixel is also a valid pixel. Then, the function chooses which clusters to keep in
reconstructing the waveform. During this project, we asked the function to keep only the
loudest cluster of pixels, only the loudest N clusters of pixels, and all clusters with values
above some fraction of the loudest cluster.

Finally, the function turns these retained clusters back into a waveform and outputs it.
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4 Method

4.1 Preliminary Analysis

There are a myriad of proposed supernova waveforms. Therefore, the first task in improving
reconstruction for supernova waveforms was to choose a set of waveforms to work with.
For this project, it was important to generate a diverse but not overwhelmingly large set
of data, which focused on more likely waveforms. Therefore, the data set is composed of
ten waveforms selected from the optical supernova search catalog. These waveforms were
generated by numerical analysis, all of them had an adjustable root sum square amplitude
for the plus polarization, and half had a root sum square amplitude equal to zero for the
cross polarization. The waveforms and their most important properties are given in Table 1
.

Table 1: Waveform List
Waveform No. Waveform Name hrssp hrssc

1 processed signal s15a2o05 ls-plus value 0

2 processed signal s15a2o09 ls-plus value 0

3 processed signal s15a3o15 ls-plus value 0

4 processed s15-time-rhplus matter-plus value 0

5 processed s15.0.h-plus value 0

6 L15-2 theta0.000 phi0.000-plus and -cross value value

7 L15-3 theta0.000 phi0.000-plus and -cross value value

8 N20-2 theta0.000 phi0.000-plus and -cross value value

9 W15-2 theta0.000 phi0.000-plus and -cross value value

10 W15-4 theta0.000 phi5.585-plus and -cross value value

Once all the waveforms were selected, the next step was to develop an intuition about the
performance of script wfr. Though the script was completed and functional, its performance
on supernovae was only vaguely understood. To improve our understanding, we generated
a detailed spreadsheet, recording the signal-to-noise ratios and plus and cross match values
for each waveform at root sum square amplitudes of 1⇥10�19, 1⇥10�20, and 1⇥10�21. This
process established expectations for level of match and allowed the selection of realistic root
sum square amplitudes based on known LIGO and VIRGO signal-to-noise ratios for further
analysis.

4.2 Altered Cluster Analysis

After developing an intuition for the performance of the waveform reconstruction script
without modifications, we began modifying the script to improve its matching ability.

The first step we took was altering the number of clusters retained by the reconstruction
script. By default, only the loudest cluster was kept. We modified this section of code so
that rather than finding the maximum cluster and retaining it, the code sorted the clusters
by size and then retained a number of clusters set by the user. In the case where the number
of clusters to keep was equal to one, the new version functioned identically to the old version.

Additionally, we also wrote a section of code where the script found the maximum cluster
value and then retained all clusters greater than some fraction of the loudest cluster. This
fixed-level version shared the concept of a tunable cluster keeping parameter with the other
alteration. As in the basic multiple cluster case, setting the keep parameter equal to one
returned the original version of the script.
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4.3 Altered Percentile Analysis

Altered percentile analysis was the heart of this summer’s project. As in the altered cluster
analysis, the goal was to maximally improve the script’s matching ability and find optimal
values for percentiles to use in reconstructing waveforms. Also like before, altered percentile
analysis encompassed a number of smaller procedures.

First, we turned o↵ the noise so that the only thing injected to the reconstruction program
was the signal. We then ran the script with percentile set at intervals of 0.1 between 90 and
99 and large intervals between 0 and 90 for the single percentile case. For the halo-core case,
we took strips of data with constant core and varying halo. In this manner, we determined
the base e↵ectiveness of the reconstruction script.

Then, we turned noise back on and repeated our single percentile and halo-core strip
analysis. This allowed us to look for optimal percentiles in the single case and develop a first
intuition regarding optimal percentiles in the halo-core case. To find these general optimal
values, we averaged results from all 10 waveforms and plotted the average.

Finally, we developed a program which allowed us to alter both the halo and core values in
the halo-core case and thereby plot a grid of halo and core percentiles as a color-coded map.
We first plotted a low resolution grid with intervals of 1 to test the e�cacy of our script then
plotted a high resolution grid with intervals of 0.25 to determine optimal halo-core values.

5 Analysis

5.1 Preliminaries

Our preliminary analysis sought to give us a general understanding of the waveform recon-
struction script’s performance by using it on a variety of waveforms at a variety of root sum
square amplitudes, all at the same default percentile value and with only the loudest cluster
maintained. The results are presented below in Table 2. Additionally, example waveform
reconstructions showing the variation in the preliminary analysis are shown in Figures 1 to
3.

This process had three important conclusions. First, a mathematically high match can
still sometimes lead to a visually inconsistent waveform. Second, changing the root sum
square amplitude can have a very large, very rapid e↵ect on the ability of the program
to accurately reconstruct the signal. Third, waveforms with zero cross root sum square
amplitudes reach a realistic signal-to-noise ratio when plus root sum square amplitude on
the order of 1.00⇥10�20 while waveforms with a non-zero cross root sum square amplitude do
not reach a realistic signal-to-noise ratio until the order of 1.00⇥10�21. This third conclusion
dictated the values used for hrssp and hrssc in all future analysis. As the expected amplitude
values of the signal are around 6 ⇥ 10�21 it is not shocking that some waveforms perform
more realistically at 10�20 and some at 10�21 ??.

5.2 Altered Cluster Analysis

Initially in the altered cluster analysis, we were unsure whether multiple clusters would be
an e↵ective strategy in the absence of noise and therefore we tested the approach. This
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Table 2: Appendix: Preliminary Waveform Results
Waveform No. hrssp hrssc SNR (H1) SNR (L1) SNR(V1) matchhp matchhc

1 1.00 ⇥ 10
�19

0 3.25 ⇥ 10
2

1.16 ⇥ 10
3

3.97 ⇥ 10
2

0.9641 NaN

1 1.00 ⇥ 10
�20

0 32.5 1.16 ⇥ 10
2

39.7 0.9388 NaN

1 1.00 ⇥ 10
�21

0 0.248 11.6 3.97 3.52 ⇥ 10
�11

NaN

2 1.00 ⇥ 10
�19

0 3.26 ⇥ 10
2

1.61 ⇥ 10
3

3.99 ⇥ 10
2

0.9307 NaN

2 1.00 ⇥ 10
�20

0 32.6 1.16 ⇥ 10
2

39.9 0.9011 NaN

2 1.00 ⇥ 10
�21

0 3.26 11.6 3.99 2.28 ⇥ 10
�11

NaN

3 1.00 ⇥ 10
�19

0 2.34 ⇥ 10
2

83.5 2.86 ⇥ 10
2

0.9977 NaN

3 1.00 ⇥ 10
�20

0 23.4 83.3 28.7 0.9233 NaN

3 1.00 ⇥ 10
�21

0 2.34 8.33 2.86 0.1877 NaN

4 1.00 ⇥ 10
�19

0 1.64 ⇥ 10
2

5.85 ⇥ 10
2

2.01 ⇥ 10
2

0.9569 NaN

4 1.00 ⇥ 10
�20

0 16.4 58.5 20.1 0.7829 NaN

4 1.00 ⇥ 10
�21

0 1.64 5.85 2.01 1.23 ⇥ 10
�10

NaN

5 1.00 ⇥ 10
�19

0 3.15 ⇥ 10
2

1.07 ⇥ 10
3

3.69 ⇥ 10
2

0.9511 NaN

5 1.00 ⇥ 10
�20

0 30.2 1.07 ⇥ 10
2

36.9 0.7409 NaN

5 1.00 ⇥ 10
�21

0 3.02 10.7 3.69 2.63 ⇥ 10
�11

NaN

6 1.00 ⇥ 10
�19

1.00 ⇥ 10
�19

2.07 ⇥ 10
3

2.26 ⇥ 10
3

2.44 ⇥ 10
3

0.9990 0.9998

6 1.00 ⇥ 10
�20

1.00 ⇥ 10
�20

2.07 ⇥ 10
2

2.26 ⇥ 10
2

2.44 ⇥ 10
2

0.9551 0.9886

6 1.00 ⇥ 10
�21

1.00 ⇥ 10
�21

20.7 2.23 ⇥ 10
2

24.4 0.2616 0.6548

7 1.00 ⇥ 10
�19

1.00 ⇥ 10
�19

2.67 ⇥ 10
3

3.18 ⇥ 10
3

3.16 ⇥ 10
3

0.9993 0.9998

7 1.00 ⇥ 10
�20

1.00 ⇥ 10
�20

2.67 ⇥ 10
2

3.17 ⇥ 10
2

3.16 ⇥ 10
2

0.9764 0.9915

7 1.00 ⇥ 10
�21

1.00 ⇥ 10
�21

26.7 31.7 31.6 0.6348 0.8819

8 1.00 ⇥ 10
�19

1.00 ⇥ 10
�19

1.99 ⇥ 10
3

2.08 ⇥ 10
3

2.34 ⇥ 10
3

0.9943 0.9969

8 1.00 ⇥ 10
�20

1.00 ⇥ 10
�20

1.99 ⇥ 10
2

2.08 ⇥ 10
2

2.34 ⇥ 10
2

0.9353 0.9835

8 1.00 ⇥ 10
�21

1.00 ⇥ 10
�21

19.9 20.8 23.4 0.5269 0.8062

9 1.00 ⇥ 10
�19

1.00 ⇥ 10
�19

1.96 ⇥ 10
3

2.15 ⇥ 10
3

2.31 ⇥ 10
3

0.9799 0.9661

9 1.00 ⇥ 10
�20

1.00 ⇥ 10
�20

1.96 ⇥ 10
2

2.15 ⇥ 10
2

2.31 ⇥ 10
2

0.9072 0.9528

9 1.00 ⇥ 10
�21

1.00 ⇥ 10
�21

19.6 21.5 23.1 0.2967 0.5701

10 1.00 ⇥ 10
�19

1.00 ⇥ 10
�19

2.38 ⇥ 10
3

2.62 ⇥ 10
3

2.81 ⇥ 10
3

0.9896 0.9958

10 1.00 ⇥ 10
�20

1.00 ⇥ 10
�20

2.38 ⇥ 10
2

2.62 ⇥ 10
2

2.81 ⇥ 10
2

0.9443 9.8840

10 1.00 ⇥ 10
�21

1.00 ⇥ 10
�21

23.8 26.2 28.1 0.4863 0.8123
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Figure 1: Injected and reconstructed signal for Waveform (6) at hrssp = hrssc = 10�19.
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Figure 2: Injected and reconstructed signal for Waveform (6) at hrssp = hrssc = 10�20.
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Figure 3: Injected and reconstructed signal for Waveform (6) at hrssp = hrssc = 10�21.
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Figure 4: Results for multiple cluster analysis with noise, averaged over all 10 waveforms.

was an ine↵ective undertaking, as some of the signals did not have any secondary clusters
in the absence of noise. For those that could form multiple clusters, the alteration had no
e↵ect on the reconstruction. Since increasing the number of clusters had no e↵ect on the
match values, we concluded that noise was necessary to make any di↵erence in the quality
of reconstruction. This result is not entirely unexpected, as there is little danger of the
reconstruction script being unable to distinguish which pixels are signals when all the pixels
are signals.

Then, we tested the multiple clusters strategy with noise. As shown in Figure 4 , increas-
ing the number of clusters to two increased the match, but the e↵ect dropped o↵ for three,
four, and five clusters maintained.

We also conducted brief analyses with fixed threshold variations and found that main-
taining a threshold of about 0.3 times the value of the maximum cluster was very good for
the cross polarization. However, the threshold version did little to help the plus version.

There are a number of reasons to be cautious with these results. For many gravitational
waveforms, maintaining multiple clusters is helpful and prevents the reconstruction program
from missing elements of the waves. However, this is only helpful if there are in fact multiple
segments of the time vs. frequency plot that contain signal. We were unsure if the waveforms
we used would be helped by having multiple clusters because not all met that qualification.
Additionally, the distribution of noise is not something we are directly controlling, nor is
it constant between di↵erent waveforms or di↵erent runs. This means that results may
be skewed in ways we cannot directly show. Further work would be necessary to speak
definitively on this topic.
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Figure 5: Results for minimum threshold analysis with noise, averaged over all 10 waveforms.

5.3 Altered Percentile Analysis: Noise-free

In conducting altered percentile analysis, we began by removing noise from the system and
altering the single and halo-core percentiles. We sought to establish what the maximum
reconstruction ability of the program was when maintaining only the loudest cluster. In
other words, we wanted to understand if the program had an obvious maximum point.

Figure 6 demonstrates a plot at single percentile values between 90 and 99 of the average
plus match for all ten waveforms and the average cross match for the five waveforms with
non-zero cross amplitudes. For each waveform, the match value was constant before reaching
a percentile value where the signal began to be excluded and dropping o↵ precipitously. Each
waveform had a slightly di↵erent drop-o↵ point, but all ranged between about 98.5 and 99.5.
The average drop-o↵ point was 98.7.

Figure 7 is a plot of halo-core values where the core percentile is held constant at 99.9
and the halo value is varied between 90 and 99.9 by steps of 0.1. The cross match appears
almost identical to the cross match in the single case, though with a drop-o↵ point of 99.
The plus match appears slightly di↵erently than the cross match, as the signal is no longer
smooth. However, the trend of the plus match curve is the same as the other noise-free
curves. It also shares a drop-o↵ point with the cross match curve.

Altered percentile analysis without noise proved a plausible upper limit on useful per-
centile values. It allowed us to establish that it was entirely possible for the program to be
too discriminating and exclude valid signals. As it established the highest percentile values
we could use without excluding signals, it provided a tentative target point for analysis with
noise included.
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Figure 6: Results for varied single percentile values averaged over all 10 waveforms without
noise.
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Figure 7: Results for strips of halo-core percentile values averaged over all 10 waveforms
without noise.
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5.4 Altered Percentile Analysis: Noise Included

After developing a basic understanding of the e↵ects of altering the percent of pixels retained
without noise, we switched to analyzing the e↵ects with noise. In many ways, this was
the heart of the process, as it was here we were able to make realistic statements about
performance of the match program in non-ideal situations.

We first repeated the single percentile analysis with the noise turned on. As before, we
altered the single percentile value between 90 and 99 by steps of 0.1 for each waveform.
We then averaged the results from all ten waveforms and plotted these results in Figure 8.
This plot also includes the results for one particular waveform, designated waveform 6, as a
comparison. Those comparative curves are designated Plus Match Baseline and Cross Match
Baseline. Determining an optimal point for the case including noise was more di�cult than
in the no-noise case, as the optimum is less obvious. There appear to be two locations of
approximately equal quality, one between 97 and 98 and one between 95 and 96. This is
illustrated by Tables 3 and 4, recording the top five match values for plus and cross.

Table 3: Top 5 Plus Matches - Single percentile with noise

Rank Percentile Plus Match Cross Match

1 98.7 0.6191 0.8089
2 97.0 0.6096 0.7621
3 97.5 0.6069 0.7884
4 95.7 0.6042 0.8092
5 95.8 0.6006 0.7695

Table 4: Top 5 Cross Matches - Single percentile with noise

Rank Percentile Plus Match Cross Match

1 65 0.5810 0.8146
2 83 0.5818 0.8110
3 58 0.6042 0.8092
4 88 0.6191 0.8089
5 55 0.5625 0.8060

We then repeated the halo-core percentile analysis with noise. In this case, we also refined
our search area slightly and examined only the area with percentile values between 94 and
99.9, based on the location of our perceived optimum in the single percentile case. We held
the core percentile constant at 99.9 and increased the halo percentile from 94 to 99.9 in
steps of 0.05. As in the other noise case, we determined the match values at each percentile
combination for each waveform then averaged all ten waveforms for plotting and analysis,
as seen in Figure 9. Note that the exceptionally low curve in that figure is the Plus Match
Baseline, indicating that our example waveform had a particularly poor plus match. The
average plus match over all ten curves is noticeably higher. Here again, as in the single
percentile case, the two best areas seem to be for halo values between 95 and 96 and again
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Figure 8: Results for varied single percentile values averaged over all 10 waveforms with
noise.

between 97 and 98. Specifically, the highest value of plus match is 0.7130, observed at a halo
value of 96.10 and a core value of 99.9. The highest value of cross match is 0.8112, observed
at a halo value of 96.65 and a core value of 99.9.

Table 5: Top 5 Plus Matches - Halo-core percentile with noise

Rank Halo Core Plus Match Cross Match

1 96.10 99.90 0.7130 0.7814
2 95.90 99.90 0.6999 0.7839
3 97.10 99.90 0.6965 0.7362
4 95.35 99.90 0.6942 0.7882
5 98.25 99.90 0.6938 0.7852

While a 1-dimensional alteration in percentile value represents a fairly robust analysis of
the single percentile case, this approach is not as useful for the halo-core case because it does
not provide a complete set of possible percentile pairs. Therefore, we created a grid which
allowed us to alter both the halo and core values for percentile.

We began with a low-resolution grid, which had halo and core values ranging between
90 and 99 in steps of 1. The results are show in Figure 10. This test served primarily as a
diagnostic, ensuring that the scripts to generate and plot the grids were working properly.
Additionally, we hoped it would allow us to see gather some impression of where optimal
values might reside. In the plus case, we ascertained a general idea that the optimal core
existed between 95 and 97. In the cross case we ascertained a idea that the optimal core was
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Table 6: Top 5 Cross Matches - Halo-core percentile with noise

Rank Halo Core Plus Match Cross Match

1 96.65 99.90 0.6722 0.8112
2 97.00 99.90 0.6738 0.8079
3 95.00 99.90 0.6893 0.8066
4 97.20 99.90 0.6823 0.8059
5 95.75 99.90 0.6696 0.8058
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Figure 9: Results for strips of halo-core combinations percentile values averaged over all 10
waveforms with noise.
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also between 95 and 97 and the optimal halo was between 94 and 98.

Figure 10: Low-resolution (1% per step) halo-core grid. Maximum match points are marked
with a *.

After generating the low-resolution grid, we switched to a high-resolution grid, with halo
and core values ranging between 90 and 99.75 by steps of 0.25. The decision to use step
sizes of 0.25 rather than 0.1 or 0.05 (as we had used previously) was a pragmatic one; we
were concerned about the amount of time necessary to run the program and felt that the
additional resolution was not worth the additional time.

We determined the top five match values for both plus and cross, as shown in Tables 7
and 8. We also created maps (Figures 11 with halo percentile on the x-axis, core percentile
on the y-axis, and match value on the color bar to illustrate the quality of match. The best
plus polarization match was 0.6811 at a halo value of 96.75 and a core value of 92.75. The
best core match was 0.8369 at a halo value of 95.75 and a core value of 91.00. The single
best point overall was probably at halo of 96.5 and core of 92.75, where the plus match was
the highest in the grid and the cross match was second highest.

Table 7: Top 5 Plus Matches - High-resolution Grid

Rank Halo Core Plus Match Cross Match

1 96.00 92.75 0.6811 0.8156
2 96.50 92.75 0.6788 0.8341
3 98.25 99.75 0.6746 07832
4 97.25 98.75 0.6739 0.7876
5 93.50 96.50 0.6721 0.8101

Another thing which is important to consider in analyzing these grids is that anytime the
halo percentile value is greater than the core value, the analysis is actually the same as the
single percentile analysis. It does not matter what the core value is because the halo is more
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Table 8: Top 5 Cross Matches - High-resolution Grid

Rank Halo Core Plus Match Cross Match

1 95.75 91.00 0.6490 0.8369
2 96.50 92.75 0.6788 0.8341
3 98.00 90.50 0.6303 0.8331
4 96.00 90.50 0.6303 0.8331
5 95.75 91.25 0.6241 0.8327

Figure 11: High-resolution (0.25 % per step) halo-core grid. Maximum match points are
marked with a *.

discriminating. This means that in order to get a grid picture of just the halo-core cases,
we divided the grid data into two triangular sections and removed the portion representing
the single percentile case. This new triangle is plotted in Figure 12. When we did this, we
found a di↵erent maximum values: 0.6746 at halo of 98.25 and core of 99.75 for the plus
polarization and 0.8303 at halo of 97.00 and core of 98.50 for the cross polarization.

One reassuring conclusion we drew from the percentile grid is that our previous estimation
that the best points were distributed around percentiles of 96 and 98 seems to be upheld
by the grid. In fact, this set seems to imply that the best percentiles at single percentiles
between 95 and 96. However, we do not think it wise to definitively state that this region is
the best without repeating the analysis to modulate uncertainties, particularly those from
varying noise.

Uncertainty in our simulation, which we hypothesize to be derived from variations in
injected noise, is highlighted by the top five lists. If, as the lists suggest, single percentile
values are the best values, then the top should be all di↵erent core combinations with the
best halo. However, that is not what we observe. This indicates that match value does vary
over di↵erent injections and reconstructions.

We examined the full percentile grid as well as the halo-core and single triangles, and
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Figure 12: The halo-core percentile grid with all single points removed

concluded that the halo-core method is not significantly better at reconstructing signals
than the single percentile case. In fact, the maximum values for both plus and cross in our
a occurred in the single case. The mean cross match value is greater for the halo-core case,
but the mean plus match value is greater for the single case. (See Table 9.) Additionally,
the di↵erences in match value are very small relative to the match value itself. Therefore, in
the situations we have investigated, the choice to use single percentile or halo-core percentile
seems to be a matter of taste.

Table 9: Maxima and Means: Single and Halo-Core from Percentile Grid

Rank Value Type

Maximum + 0.6811 Overall
Maximum + 0.6811 Single
Maximum + 0.6746 Halo-core
Maximum + 0.8369 Overall
Maximum ⇥ 0.8369 Single
Maximum ⇥ 0.8303 Halo-core
Mean + 0.6225 Overall
Mean + 0.6250 Single
Mean + 0.6202 Halo-core
Mean ⇥ 0.7849 Overall
Mean ⇥ 0.7826 Single
Mean ⇥ 0.7872 Halo-Core
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6 Conclusion & Directions for Future Research

Results thus far indicate that it is possible to optimize the reconstruction process, but that
even in its optimal state, the reconstruction is unlikely to be anywhere near perfect. While
the average match for the cross case hovers around 0.8, the average match for the plus case
hovers around 0.6. This is a low enough value to introduce a visible di↵erence between the
injected and reconstructed waveform in plots of the reconstruction. Therefore, while what
we have done so far is good, it can be made better.

There are several avenues for continued investigation into reconstruction of gravitational
wave signals from supernovae.

First, we tested only a small selection of ten waveforms during this project. There are
actually fourteen more distinct waveforms in the optical supernova catalog, plus 99 more
orientations for each of the last five waveforms we tested. In total, then, there are about 500
other variations of waveforms which could be investigated. Applying this analysis to more
variations may increase our confidence in our results.

Second, we could repeat our analyses and develop a range of match values for each set
of percentiles. At the moment, we only have one value for each variation, meaning that
variations in noise or other factors can completely skew our perceptions of which percentiles
are best.

Third, the optimum for percentile values is still rather fuzzy. Values presented following
this summer’s work represent more of a range than a particular value. Higher resolution
could be useful in establishing where the best places to set percentile values. We think that
it would be particularly nice to build grids with a 0.1 resolution, so that the grids and single
strips have the same resolution.

Fourth, most of the altered cluster analysis is open for further investigation. While we
did work on it a little, we focused primarily on the altered percentiles analysis. Further
analysis can determine which waveforms (if any) the multiple cluster analysis is actually
e↵ective for. For those waveforms, further analysis can also determine optimal numbers of
clusters and appropriate base values for the fixed value case.

Fifth, we could improve the manner in which we deal with noise in testing our reconstruc-
tion script. At present, the manner in which the code is constructed causes it to re-inject the
fake data (and therefore form a di↵erent noise spectrum) for every call to the reconstruction
script. This means that even for “ identical” tests, the match values are not always the
same. It would be helpful (especially for constructing grids such as those in Figures 10 and
11) if noise curves were consistent for each point in a test.
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