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Figure 1: Effect of a gravitational wave with the passage of time (top) with plus polarization
and (bottom) with cross polarization.

1 Introduction

According to Einstein’s General Theory of Relativity, matter and energy cause spacetime
to curve. The theory predicts that, as a result of certain astrophysical events, ripples in
the curvature of spacetime are emitted. These ripples are known as gravitational waves.
The waves can polarized in two ways, known as the “plus” and “cross” polarizations. As a
gravitational wave passes by an object, it causes the object to stretch along one axis and
compress along another, depending on the polarization of the wave, see Fig. 1. Energy, called
gravitational energy, is carried away from the source by these waves.

Gravitational wave detection is done with large laser interferometers. There are several
such detectors around the world and in development. Among these are LIGO, with sites in
Washington State and Louisiana, VIRGO, based in Italy, GEO 600 in Germany, and TAMA
300 in Japan. A space-based detector called LISA and an underground detector called the
Einstein Telescope are planned for launches in the future. These experiments should be able
to detect gravitational waves from a variety of sources such as supernovae explosions from
dying stars, supermassive black holes at the center of galaxies, and binary systems such as
neutron star/neutron star(NS/NS) binaries, black hole/neutron star (BH/NS) binaries and
black hole/black hole(BH/BH) binaries, among others.



2 Parameter Estimation

After a gravitational wave is detected, we will want to extract the astrophysical information
contained in the signal. This process is known as parameter estimation. There are, in general,
fifteen parameters associated with a gravitational wave signal from a compact binary system:
the masses of the two objects in the system, two three-dimensional vectors that characterize
each object’s spin, the luminosity distance, the time and phase of coalescence, two parameters
for sky position, and two angles that define the total angular momentum of the system [1].
There is a variety of information to be learned by accurately estimating the values of these
parameters. For example, knowing the masses of the components of the binary would allow
us to infer what type of objects the system is composed of. Locating the source precisely in
the sky would allow us to follow up the gravitational wave detection with electromagnetic
telescopes and learn more than we could have with just the gravitational wave signal.

2.1 Bayesian Analysis

The data collected by gravitational wave detectors can be expressed in the following way:

—

d=mn+ h(0), (1)

where n is the noise in the detector and h, which depends on parameters g and may or may
not be present, is the gravitational wave signal. Bayesian analysis is used for parameter
estimation because, due to the high dimensionality of the parameter vector, a grid based
approach is impossible. In a grid based approach, the number of points necessary to calculate

grows as
N =n“ (2)

where n is the number of points in one dimension of the grid and d is the number of dimen-
sions. If, for example, we wanted to calculate ten points in each dimension, which is already
far too small for any practical problem, for fifteen dimensions, we would need to evaluate
10'° points. Therefore, we must use more efficient algorithms. Bayesian techniques rely on
Bayes’ theorem

— —

7. Pd)p(0)

The quantity p(¢§|d) is called the posterior probability density function (pdf) and gives the
probability of a set of parameters given the data. The likelihood of the data given the
parameters is given by p(d ]5) The prior probability, p(g), reflects all prior knowledge about
the system before a measurement is taken. The quantity in the denominator is called the
evidence and is a normalizing factor. It may or may not be important depending on whether

the interest is in relative or absolute posterior probabilities.

(3)

2.2 Markov Chain Monte Carlo

There are several algorithms used for Bayesian inference of gravitational wave parameters.
One of the most common is called Markov Chain Monte Carlo (MCMC). The algorithm
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works by choosing a starting point randomly from the prior distribution. The likelihood is
calculated at that point using the equation

L(6) :exp(_< d—h(0)|d — h(0) >

) (4)

where d is the data, h is the value of the waveform evaluated at the point g and the inner
product of two vectors a and b is given by

> a(f)b"(f)

<alp>= 43%/ BIPAT) ge (5)
o Su(lf])

S, is the one-sided noise power spectral density, which depends on the details of the detector

that took the data.

The value of the point is then added to a Markov chain, a new point is proposed based on
a chosen jump proposal function, and the likelihood for the proposed point is calculated. If
it is greater than the previous point’s likelihood, the point is added to the Markov chain. If
the likelihood is less than the previous point’s likelihood, a number between 0 and 1 is picked
randomly. If the ratio of the proposed likelihood to the previous likelihood is greater than
the random number, the point is still added to the Markov chain. Otherwise, the proposed
point is discarded, and the previous point is added to the chain.

This process is repeated until a termination condition is met. A histogram of the resulting
Markov chain yields the desired posterior probability density function. Marginalizing to one
dimension allows us to plot the pdf for each parameter individually, as shown in Fig. 2. This
algorithm does not require that the evidence be calculated because the relative density of
points in the chain yields the pdf, and no normalizing is needed.

2.3 Nested Sampling

Nested Sampling [2] is another parameter estimation technique used frequently for grav-
itational wave research. In contrast to Markov Chain Monte Carlo, Nested Sampling is
primarily interested in calculating the evidence, though the posterior density function can
be recovered from this algorithm. The evidence is given by the integral

7z = / L(8)r(8)d6 (6)

where L(6) is the likelihood and m(#) is the prior. The algorithm works by generating N live
points from the prior. The typical number of live points used in our runs was N = 1000. For
each iteration ¢, the likelihood is calculated for each of the points, and the point with the
lowest likelihood L; is removed and replaced with a point of higher likelihood. The evidence
value, Z, is then incremented by an amount L;w;, where w; = X; 1—X; and X; = exp(—i/N).
To ensure the new live point is uncorrelated with the previous one, a short Markov Chain
Monte Carlo is used to pick the new point. Through a process of reweighting, the live points
can be used to produce the posterior density function.
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Figure 2: Example posterior density function from MCMC marginalized for luminosity dis-
tance. The injected value for the luminosity distance was 200Mpc.

3 Convergence Tests

When using Markov Chain Monte Carlo, Nested Sampling, or any other stochastic tech-
nique, it is important to carefully consider whether a given run has converged and should be
trusted. In general, if the algorithm were allowed to run for an infinite number of iterations,
it would reach the target distribution. For obvious reasons, this is impossible, so we must
construct methods of cutting runs short, but still being confident the correct distribution
has been reached. One way of doing this, utilized by MCMC, is to execute several runs with
different starting points in parallel. If the separate runs have reached the same distribution,
they have likely converged. In Nested Sampling, the algorithm is run until the value L;w;
produces a negligible change in Z. There are other possible conditions that could be used,
but none ensure that the target distribution has been found.

The goal of my project was to make a variety of information about the convergence of runs
available in one place, so that a user could quickly and easily decide whether to trust the runs.
I worked specifically with Nested Sampling runs. The Nested Sampling code, available in the
LIGO Scientific Collaboration Algorithm Library (LAL), creates several independent runs,
which are eventually merged by post processing code. The live points are then reweighted,
and the resulting posterior probability density functions are output to a web page along with
other information about the runs.

Merging the separate Nested Sampling runs is not valid if one of the runs has not reached
the target distribution, and there is no guarantee that this has happened for any run. To



account for this, my project focused on comparing the independent runs before they have
been merged. If they do not appear to be drawn from the same distribution, at least one
run has not converged.

My code works in conjunction with the post processing code. It performs a number of
comparisons and statistical checks on the multiple runs and outputs the results to a web page
dedicated to convergence information. In addition, it writes out a warning file if certain tests
were not passed, as defined by the user. This is particularly useful for users who have a large
number of events to analyze. It is impractical to look at every page individually, so the
existence of the warning file associated with a particular event would indicate that the event
may be suspicious and should be analyzed further.

I implemented several tests in the interest of providing a more comprehensive overview of
the convergence of the Nested Sampling runs. The first was a simple comparison of certain
values of the runs. At the top of the web page, I output a table containing the maximum
log likelihood, the value of the log evidence, and the maximum log posterior for each run.
For well converged runs, these values should closely agree. I also performed two statistical
tests to compare the distributions found by the individual runs, the Kolmogorov-Smirnov
test and the Gelman Rubin test.

3.1 Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov test (KS test) evaluates whether two data sets are drawn from
the same distribution. It works by making a cumulative fraction plot, shown in Fig. 3,
for each set. The maximum difference, the D statistic, is then calculated, Fig. 4, between
the two plots. Assuming the hypothesis that the two data sets are drawn from the same
distribution, the probability of obtaining a D statistic value as extreme as the calculated
value, called the p-value, is then determined. If the p-value is greater than a chosen value,
say 0.05, then the null hypothesis, the hypothesis that assumes the sets are drawn from the
same distribution, cannot be rejected. This does not allow us to claim they were drawn
from the same distribution. Passing the KS test is necessary but not sufficient to make this
conclusion.

In my code, I implemented the KS test individually for each parameter for all pairings of
separate Nested Sampling runs. I created two different visual representations of this on the
web page. The first is a histogram plot of the p-values of each parameter. The second is a
table for each parameter that shows the p-value calculated from the KS test for each pairing
of runs. The idea behind including the two visualizations is that a quick glance at the plots
would give the user a general feeling for how the runs performed in the KS test, and the
tables would give more detailed information about specific pairings of runs. Examples of the
plots and tables can be found in the Appendix. As can be seen in the tables in the KS Test
section of the page, the p-values along the diagonal are always exactly equal to 1.0 because
performing a KS test on a data set with itself will always yield a perfect fit. The tables
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Figure 4: Cumulative fraction plots for two data sets with the maximum difference D shown
in red. (source: http://www.physics.csbsju.edu/stats/KS-test.html)



0.06 T T T T T 0.12

(a) Actual distribution (b) Distributions found by two different runs

Figure 5: A bimodal distribution and the result after two runs each find only one mode.

are also symmetric because the result of a KS test between run ¢ and run j is the same as
between run j and run i.

3.2 Gelman Rubin Test

The Gelman Rubin R statistic was first described by Andrew Gelman and Donald Rubin
in 1992 [3]. The basic idea is to compare the variance of each individual data set with the
variance of the merged data sets. The R statistic, also called the potential scale reduction,

is given by
~ n—1 m+1B_ df
VR=\ /s (7)
n mn W’ df —2

The quantities m and n are the number of data sets and the number of elements in each
data set respectively. B is the variance between the means of the data sets, and W is the
variance within a given set, averaged over all m sets. The number of degrees of freedom is
given by df.

The usefulness of this test is easily seen when considering a simple example. Say two runs
are done on a distribution with two modes, Fig.5a. If each run finds only one of the modes,
shown in Fig. 5b, clearly neither can be said to have converged. Analyzing the results of
a Gelman Rubin test in this situation will make it abundantly clear that the runs should
not be trusted. As with the KS test, passing the Gelman Rubin test is necessary but not
sufficient for claiming that runs have converged. For instance, if the two runs in the bimodal
example each found the same mode, it would pass the Gelman Rubin test despite the fact
that an entire mode has been missed.

In my code, I implement the Gelman Rubin test for each parameter and output the R
value to the convergence web page. An R value of 1 would indicate that additional iterations



would not improve the agreement between runs. An optional argument in the code allows
the user to set a threshold for the R value. If any parameter returned an R value greater
than the given threshold value, a warning file would be output containing the name of the
parameter and R value. The default value for the threshold, if no value is given, is 1.01. In
addition, for all parameters, I output a scatter plot of the value of the parameter versus the
sample number. Each run is plotted in a different color on the same plot. The reason for
creating these plots is that if a particular run was not well converged, it may be easily seen
on the plot that it had not completely sampled the prior volume.

4 Conclusion

Being confident that runs have converged is very important in parameter estimation of
gravitational waves. While some checks have been in place for some time, implementing
furthur tests can only be beneficial. Additionally, having a variety of information about
convergence all in one place makes it much easier to analyze large quantities of data. In
the future, it would be helpful to investigate other statistical tests that may applicable to
checking the convergence of gravitational wave parameter estimation code. It may also be
worthwhile to more carefully consider the termination conditions of the simulations them-
selves to determine whether more robust solutions than the ones currently implemented
exist.
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5 Appendix

Shown below is an example of a webpage output from my code, cbhcBayesConvergence.py.
The script will be available in the pylal section of LAL after it has been merged successfully
with the existing version.
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