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Gravitational waves are one of the many astrophysical messengers with which

we can learn about our universe. Although no valid detection has been made to

date, gravitational waves from the coalescence of massive bodies is projected to be

a promising source for potential detection. We examine a method for improving the

chirplet omega pipeline sensitivity to binary coalesence that are extended in time

in forming chirplet chains. By appropriately clustering the variant frequency sin-

gaussian pixels the algorithm uses to decompose the data, the signal to noise ratio

SNR of events can be greatly increased. We present such a clustering method and

discuss means of testing its performance.

I. INTRODUCTION

The subject of gravity has piqued the minds of physicists since Newton was hit on the

head by an apple. In 1915, Albert Einstein’s Theory of General Relativity replaced Newtons

law of universal gravitation proclaiming that gravity was not merely a force emanating

from particles with mass, but rather a property of space-time. Similar to the creation of

electromagnetic waves in order to mediate motions of charges, gravitational waves are ripples

in space-time that are produced to mediate changes in gravity fields caused by accelerated

masses. The existence of gravitational waves has been indirectly substantiated by University

of Massachusetts Amherst’s own Hulse and Taylor [1, 2]. Using a radio telescope, the two

scientists discovered and analyzed a binary pulsar, showing that its’ orbit was decreasing in

radius and loosing energy in strong agreement with that predicted by general relativity and

gravitational waves.

Many scientific endeavors that aimed at the first direct detection of these elusive waves
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have been born over the years. Ranging from large metal columns to spuper-cooled spheres,

no valid detection has been made to date by any detector. However, the property that gravi-

tational waves cause distortions in space-time perpendicular to their direction of propagation

in a linear combination of two orthogonal polarizations seperated by 45�, h+ (‘h–plus’) and

h⇥ (‘h–cross’), makes large scale interferometers a propitious tool to use in pursuit of grav-

itational waves detection. Already proving useful in such revolutionary undertakings as

disproving the existence of the æther in favor of special relativity, Michelson-Morley in-

terferometers are now conspiring with many other groundbreaking technologies to further

corroborate Einstein’s predictions.

Interferometers are used to measured relative changes in time it takes a photon to travel

between two test masses placed at the end of two orthogonal arms. The quantity measured

h(t), called starin, is given by

h(t) = F+h+(t) + F⇥h⇥(t)), (1)

where the angular response of the detectors to the position and polarization of the detector,

F+ and F⇥, are given by

F+ = 1(1 + cos2✓)cos2�cos2 + cos✓sin2�sin2 , (2a)

F+ = �1(1 + cos2✓)cos2�cos2 + cos✓sin2�sin2 . (2b)

Here, ✓ is the altitude coordinate ranging from 0 to ⇡ with zero as the zenith, � is the azimuth

coordinate ranging from 0 to 2⇡, and  , ranging from 0 to ⇡, determines the alignment of

the polarization of the incoming wave to lines of constant ✓ and �. The detector response

is therefore at a maximum on the axis of the zenith with sensitivity of zero on the plane of

the interferometer located 45� from the orthogonal arms.

Today, six major large-scale interferometers work in collaboration with the ultimate goal

of the first detection of gravitational waves. The Laser Interferometer Gravitational Waves

Observatory (LIGO) operates three Fabry-Perót Michealson interferometers at two sites, one

in Hanford, Washington, and the other at Livingston, Louisiana. Both sites have detectors

with arm lengths of 4km, and the Hanford site also operates a second half length detector.

Similar to LIGO, Virgo is a 3km French-Italian detector located in Cascina, Italy, GEO600 is

a 600m British-German detector located in Germany, and TAMA is a 300m detector located

in Japan being used as a prototype for the planned Large Scale Cryogenic Gravitational Wave
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Telescope (LCGT). In order to learn from one another and obtain a more credible detection,

scientists from all projects work together in improving their instruments, and analyzing

data. This global network of gravitational waves detectors will not only help validate a

coincident event in many detectors as a detection, but will also help in the reconstruction

of the waveform, parameters, and sky position of the event’s source.

Current interferometric detectors observe a much larger bandwidth than previous detec-

tion pursuits and are much more sensitive, capable of measuring relative distance changes

in arm length on the order of 10��21. Although this translates measuring length distortion

three orders of magnitude less than the diameter of a proton, space-time is quite sti↵, and

this achievement is not yet sensitive enough to see an event. The insu�cient sensitivity is

attributed to noise within the detectors.

The dominate sources of this limiting noise are seismic activity near the detectors, ther-

mal vibrations in components of the instruments, and the photon shot noise. For this reason,

some detectors are undertaking a multitude of upgrades to reduce detector noise from the

many identifiable sources. Said upgraded detectors, to be called Advanced LIGO and Ad-

vanced Virgo, will hopefully improve sensitivity to within the range of detectable events.

Additionally, a space-based detector is currently in the planning phases, with an uncer-

tain future due to budgetary issues. With its’ larger scale and isolation from earth-based

noise sources from which current detectors su↵er, this new detector promises substantial

sensitivity and bandwidth improvements over current terrestrial detectors.

II. SEARCH ALGORITHMS

All these developments present a challenge to gravitational waves data analysts around

the world to ready search algorithms for the approaching age of plausible detection. More-

over, development of these analysis techniques does not merely center around detection.

Rather, many methods strive to ascertain information about event sources from the gravita-

tional wave data. These endeavors will help add gravitational waves to the list of messengers,

like electromagnetic waves and neutrinos, that scientists can use to cultivate knowledge about

our universe. However, unlike other astronomical messengers, gravitational waves travel to

earth virtually unobstructed, with detailed information about the cosmic movements of

masses from which they originated. This provides scientists with the opportunity to learn
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about the details of phenomena that are unobservable by other methods. This new mes-

senger may even prove useful in discovering completely new information about our universe

that has never before been observed nor predicted.

There are many types of astronomical events for which data analysts hope to make de-

tections. These events are generally grouped into four major categories: burst, continuous,

inspiral, and stochastic. They can be caused by energetic explosions, the rotation of irreg-

ularly shaped stars, binary system coalescence, and noise from the big bang respectively.

Di↵erent search algorithms have been tailored to the distinct features that these sources

may produce in the detector signal. In this paper, we will focus on a matched filter burst

search called the Omega pipeline [3] and its variant, chirplet-omega.

A. Omega pipeline

The Omega pipeline is a burst search algorithm designed for the detection gravitational

wave transients from sources that are unmodeled, and therefore, do not have enough template

waveforms to form a matched filter search and would create too great computational costs

to utilize cross-correlation techniques. Such sources include the merger phase of compact

binary coalescence, core collapse of supernovae, etc. All of these processes produce rapid

(often relativistic) movements of large quantities of mass.

The Omega pipeline follows an abstract bases approach whereby the data is decomposed

into a bases of waveforms appropriate for the desired signal space. These waveforms can

also be used to check for coincident events the data streams multiple detectors. In general,

other like algorithms use either time-domain or time-frequency searches in the form of delta

function or wavelets respectively. The basis used by omega is a multi resolution basis of

complex waveforms that is over complete, producing minimum time-frequency uncertainty

in order to improve the detection of signals at the cost of signal reconstruction. We follow

the derivation of the bases functions in [3].

The burst signals Omega is designed to detect have time-domain and frequency-domain

representation expressed by the Fourier pair

h(t) =

Z +1

�1
h̃(f)e+i2⇡ftdf, (3a)

h̃(f) =

Z +1

�1
h(t)e�i2⇡ftdt, (3b)
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with the dimensionless strain amplitude is given by

||h|| =
Z +1

�1
|h(t)|2dt =

Z +1

�1
|h̃(f)|2df. (4)

The time and frequency domain can be normalized to give

 (t) =

Z +1

�1
 ̃(f)e+i2⇡ftdf, (5a)

 ̃(f) =

Z +1

�1
 (t)e�i2⇡ftdt, (5b)

with normalized strain amplitude || || (defined the same way as for ||h||) equal to unity.

Therefore the gravitational wave signal is defined by its strain amplitude multipled by the

normalized Fourier pair

h(t) = ||h|| (t), (6a)

h̃(f) = ||h̃|| ̃(f). (6b)

From this the central time, central frequency, duration and bandwidth can be defined as

⌧ =

Z +1

�1
t| (t)|2dt, (7a)

� =

Z +1

0

f | ̃(f)|2df, (7b)

�
2
t =

Z +1

�1
(t� ⌧)2| (t)|2dt, (7c)

�
2
f =

Z +1

0

(f � �)2| ̃(f)|2df, (7d)

respectively, and the dimensionless quality factor is defined as the ratio of the central fre-

quency to the bandwidth

Q =
�

�f
. (8)

Using the fact that the duration and bandwidth must obey the uncertainty relation

�t�f � 1

4⇡
(9)

one can derive the resulting basis of complex valued sin-gaussians in each domain

h(t) = ||h(t)||
✓

1

2⇡�2
t

◆1/4

exp


�(t� ⌧)2

4�2
t

�
exp [i2⇡� (t� ⌧)] , (10a)
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h̃(t) = ||h(t)||
 

1

2⇡�2
f

!1/4

exp

"
�(f � �)2

4�2
f

#
exp [i2⇡⌧ (f � �)] , (10b)

allowing for arbitrary phase of the incoming gravitational wave. Finally this can then be

normalized and expressed in terms of Q to give

 (t; ⌧,�, Q) =

✓
8⇡�2

Q2

◆1/4

exp


�
✓
4⇡2

�
2

Q2

◆
(t� ⌧)2

�
exp [i2⇡� (t� ⌧)] , (11a)

 ̃(f ; ⌧,�, Q) =

✓
Q

2

8⇡�2

◆1/4

exp


�
✓

Q
2

4⇡2�2

◆
(f � �)2

�
exp [i2⇡⌧ (f � �)] . (11b)

In order to appropriately tile the desired signal space, two priorities have taken into account.

First, the basis must be complete enough to ensure small energy loss when matching basis

functions to a signal, and second, it must not be too fine such that the computational cost

becomes too high. Hence, a minimum mismatch, µmax, is defined the maximum distance

that a signal can be from its nearest eight templates in the signal space (imagine it being in

the center of a cube, equidistant from all eight tiles at the corners). From this, the minimum

distance between each template, �smax, is defined as

�smax = 2
⇣
µmax

3

⌘1/2
. (12)

which can be used to find the required ⌧ , �, and Q for the basis functions. By creating

discrete Q-planes, discrete central frequencies, and central times can be determined to create

the final tiling structure. For a depiction of the tiling space see Figure 1.

Once the space is tiled and data decomposed into waveform signals, a thresholding algo-

rithm selects the tiles with the highest energy and therefore the closest match to the data,

then an exclusion algorithm removes any overlapping tiles.

In order to improve this process, before decomposing the signal, the pipeline first employs

a linear predictor error filter to whiten the raw data. This requires the assumption that the

raw data is an autoregressive process, or that the detector environment in which the data

is created acts as a filter itself, responding in a predictive way to the initial white noise

signal input. A given predictable sequence x̃[n] can be expressed in terms of the previous

M samples by

x̃[n] =
MX

m=1

c[m]x[n�m] (13)

where the coe�cients c[m] are determined by training the filter on a a previous segment. Af-

ter this training, the algorithm removes artifacts of correlated noise in the following samples
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Q

time

frequency

FIG. 1: Depiction of the signal space tiling structure of the Omega pipeline

of data yielding whitened data. Due to the computational cost of whitening large segment

lengths, the omega search implements a finite impulse response filter in the frequency domain

that uses cycles of fast Fourier transforms to reduce the computational cost from polynomial

to logarithmic time.

This technique poses a problem when running coincident searches with multiple detectors,

or coherent searches. That is, the dispersion of whitened data from di↵erent detectors may

vary substantially, which will result in timing errors between the data sets. If the shift

nears or surpasses the amount of time it takes gravitational waves of speed c to travel

between detectors, the algorithm may dismiss an event because it is not properly observed in

multiple detectors. To compensate for this potential problem, the omega search implements

zero-phase filtering such that both the impulse response filter and its time reverse filter

are applied to the data. When combined, this symmetry creates a zero-phase filter. The

resultant filter can be expressed in the frequency domain as

Z(f) = B(f)B⇤(f)X(f) (14)

where B(f) is the frequency domain response of the original filter expressed by its discrete

time Fourier transform. With this whitened data stream, the Omega algorithm can increase
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its sensitivity to burst gravitational waves sources.

B. Chirplet-omega Search Algorithm

One of the most promising sources of detectable gravitational waves is the coalescence of

black hole and/or neutron star binaries. This coalescence is characterized by three phases,

inspiral, merger, and ringdown. The first phase represents when two massive bodies are

caught in one another’s gravitational field, causing them to orbit one another. Just as in

Hulse and Taylor’s analysis of a binary containing a pulsar, the system looses energy in

radiating gravitational waves hence causing the radius of the orbit to decrease over time

and the orbital frequency to increase. As time progresses, the two bodies eventually spin

close enough to collide, with rapid frequency evolution occurring both before and during the

merger phase. Finally, the combined bodies emit gravitational waves as a the system settles

in the ringdown phase. Although both the inspiral and ringdown phases are well modeled

by various techniques, the merger phase still represents an unmodeled regime of burst grav-

itational waves. This phase also produces very high signal strength in the interferometer

data.

The Omega pipeline is sensitive to parts of the inspiral and merger phases of coalescence,

where the frequency may be changing quickly wilt respect to the duration of the templates.

Ergo the assumption implied by the sin-gaussian basis family that the signal frequency

evolution will be locally stationary may cause significant mismatch between the signal and

the available templates. The chirplet-omega search algorithm is an extension of the omega

pipeline that, in order to avoid such mismatch, adds a fourth parameter to the set of ⌧ ,

�, and Q, used by Omega, called chirprate d. This parameter governs the linear frequency

variation

f(t) = �+ d(t� ⌧), 1. (15)

in the chirplet-like templates which when combined with Equation (11a) yields the normal-

1 We follow the notation central time ⌧ and central frequency � set by [3] rather than that of [4]



9

ized time-domain chirplet templet definition

 (t; ⌧,�, Q, d) =

✓
8⇡�2

Q2

◆1/4

exp


�
✓
4⇡2

�
2

Q2

◆
(t� ⌧)2

�
exp

⇥
i2⇡
�
� (t� ⌧) + d (t� ⌧)2

�⇤
.

(16)

An example chirplet template is provided by Figure 2 with linear frequency evolution in

Figure 3.
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FIG. 2: Sin-gaussian template with Q = 50, f = 350, and d = 5000
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FIG. 3: Frequency evolution of chirprate d = 5000

In order to tile the desired signal space, a similar minimum mismatch technique is im-



10

plemented in the four dimensional space. However, this yields a number that is an order of

magnitude larger than that required by standard Omega to tile a similar space with three

parameters. Hence, the computational cost, which scales approximately linearly with the

number of templates, will also increase by an order of magnitude. A consequence of the

properties of the chirplet templates is that yields a much finer tiling of the low frequency

space than does Omega, increasing its sensitivity to the detection of low coalescence fre-

quencies of low mass binary systems. Previous studies have shown that this results in peak

SNR recover of events by chirplet being between 5% to 40% higher than standard Omega.

III. CHIRPLET CHAINS

When attempting to separate a potential gravitational wave signal from the noise, two

outcomes are possible. The first, H0, being that there is in data xk, there is only noise nk,

and the second, H1, being that there is both signal sk and noise present adding together

to xk. Although both Omega and the chirplet extension implement a whitening filter in

order to reduce detector noise, some noise still remains in the data. Moreover, random (and

thus not removed by the whitening filter) artifacts in the data may even appear to be H1,

yielding an energy tile with high significance, when they are are still just noise. With the

knowledge that these false detections may occur, measures taken to avoid this may produce

false dismissals, where H0 is concluded when a signal exists. By using the Neyman-Pearson

(NP) critereon, the error on the probability of a false dismisal can be minimized while

keeping the false alarm probability fixed. The likelihood ratio follows this assumption and

is defined as

� =
P ({xk}) |H1

P ({xk}) |H0
, (17)

and a given signal in the data,

s(t) = Acos (�(t) + '0) , (18)

the maximization of the likelihood ratio can be obtained for the amplitude A and instanta-

neous frequency '0. However, when attempting to maximize over t0 and �(t), it is compu-

tationally costly to maximize the likelihood over all possible smooth chirp phase evolutions

over time. Therefore, it is convenient to discretize the phase evolution �(t) as is done in
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chirplet Omega. Hence, in order to recover the phase evolution of the smooth chirp signal,

an approximation by means of a string of ‘lines’ can be implemented. The set of the resulting

chirplet chains then forms a template grid of the set of smooth chirp signals. The measure

of whether the phase evolution of the chirplet chain, �⇤, is a good approximation for that of

the smooth chirp, � , or the mismatch between the signal and chosen template, is given by

L(�,�⇤) =
`(s;�)� `(s;�⇤)

`(s;�)
. (19)

and should be less than the maximum mismatch defined in previous sections as µmax. Min-

imizing this mismatch over the set of chirplet chains comes at a large computational cost.

However, due to the fact that this mismatch is additive, dynamic programing can be im-

plemented to split this large optimization problem into smaller ones. This is done by ap-

proximating smaller sections of a smooth chirplet by chirp templates, each minimizing the

mismatch for a given section, and then connecting the templates to form a chirplet chain.

The connection processes is performed by connecting chirplet templates that satisfy

regularity constraints. For the set of constant amplitude chirplet proposed in [5], there are

absolute bounds for connecting two chirplets, N 0
r and N

00
r defined as

|mj+1 �mj|  N
0
r, (20a)

|mj+1 � 2mj +mj�1|  N
00
r , (20b)

where mj represents the time and frequency coordinate of the endpoint of the chirplet with

mj�1 and mj+1 being similar coordinates for the chirplets before and after j in the chain.

Through dynamic programming, the likelihood ratio becomes a sum over j chirp templates

to create a chirplet chain with minimum mismatch.

IV. IMPLEMENTATION OF CHIRPLET CHAINS: CLUSTERING

ALGORITHM

In order to better detect events with rapid frequency evolution that are extended in

time, the chirplet clustering algorithm follows the strategy of chirplet chains proposed by

[5]. Although the Omega hierarchical and density algorithms can cluster the output of the

chirplet transform, they neither take into account chirprate nor the fact that clusters forming
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chirp signals should resemble a chirplet chain with somewhat continuous phase evolution.

The chirplet specific algorithm takes the thresholded pixels that have been obtained after the

whitened data has been projected over the linearly variant frequency sin-gaussian template

family with minimum mismatch as its input. These chirplet template triggers can be

analyzed in order to assemble appropriate chirplet chains if they should exist. To do this,

the chirplet clustering algorithm di↵ers somewhat from the method described in [5].

The regulatory parameters defined in Equations (20a) and (20a) are replaced2 with a

set of three dimensionless parameters, along with two other conditions that govern whether

a given set of tiles should be clustered to form a chirplet chain. The algorithm first sorts

the triggers by start time. Next examine each tile j with duration �t, bandwidth �f , and

chirprate d, and applies a set of conditions to its neighbor j
0
with duration �

0
t, bandwidth

�f
0, and chirprate d

0
, a time and frequency gap3 away of �t and �f respectively (see Figure

4). In order to govern the maximum time gap , the measure �t is defined as

�t ⌘ �t

�t + �
0
t

 0.05, (21)

or the maximum time gap of two tiles can be at most 1
20 their combined durations. In a

similar way, governing the maximum frequency gap , the measure �f is defined by

�f ⌘ �f

�f + �
0
f

 0.8, (22)

or the maximum frequency gap of two tiles can be at most 4
5 their combined bandwidths. A

condition that the central frequency must increase is also applied. The measure �d defined

by

�d ⌘ d

d0

8
><

>:

 0.25

� 1
(23)

governs the chirprate ratios and implies that the maximum chirprate ratio of tile j to j
0

is 1:4 and the minimum ratio is 1:1. The condition that the chirprate must increase is

also applied. The maximum di↵erence in chirprates can be seen in Figure 5. A final step

2 these “regulations”, defined above, are motivated by the trigger response of chirplet to binary system

coalescence injected waveforms
3 although we use the term ‘gap’ , it refers to both the possibility of a positive or negative (overlaping)

distance between two tiles j and j
0
in the time-frequency plane
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of the algorithm decides, if there are multiple j
0
candidates that satisfy the conditions, to

cluster the neighbor tile with the highest normalized tile energy in order to most increase

the likelihood that the chirplet chain being constructed is a signal.

d

d’

f

!t

!f

!t

tile j

tile j’

!f

!f’

!t’

FIG. 4: Depiction of attempt form chirplet chain by clustering tile j to tile j
0

While linking chirplet triggers, the algorithm sums the tile energies for the chain, conse-

quently increasing the likelihood that said chain is an event as it links together more tiles. A

benefit of chirplet clustering is that the processes does not take into account trigger energy

until a chirplet chain is already assured to exist, and it is simply deciding which tile is the

best candidate to chose for the next link in the chain. Moreover, unless specified to do

so, the algorithm does not recognize single pixels as events. As a result, the threshold for

triggers to be considered by the chirplet clustering algorithm may be lowered and therefore

could increase the sensitivity of the chirplet search to ‘quieter’ events. This, however, can

only be done after the performance of the new algorithm is tested.

V. TESTING AND FUTURE WORK

In order to understand the whether the clustering algorithm works properly, a ‘random

number’ test was first created. Triggers with pseudo random parameter values were created
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t

f

d/d' = 1

d/d' = 2

d/d' = 3

d/d' = 4

d/d' = 5

j j’

FIG. 5: Permisable chirprates are shown in green with the maximum ratio between j and j; being

1:4. The red line shows an increase that is too large.

in very large quantities using the matlab function rand in order to determined if the algo-

rithm would cluster appropriately. The test has since been refined to produce more physical5

random triggers. First, a number of tiles specified along with a density of tiles per unit time,

which determines the length of the segment of trigger data. Next, random central times, ⌧ ,

are assigned within that interval. Frequencies, chirprates, and quality factors are assigned

in the ranges of � 2 (0, 1, 000), d 2 (0, 2048), and Q 2
�p

11, 100
�
. From these values, the

range of bandwidths can be calculated using Equation (8) as �f 2 (0, 10), and the durations

can be calculated using the relation

�t =
Q

2⇡
p
11f

(24)

as �t 2
⇣

1
2⇡ ,

50p
11⇡

⌘
. Finally, the ‘thresholded’ normalized tile energies E are E 2 (0.5, 100).

The test uses the new chirplet clustering algorithm to search for chirplet chains, and various

5 these values were determined by standard parameter bounds for a chirplet search. Although they are not

an exact representation of potential triggers that a chirplet search could produce from a stream of data

because they are not discretized to the finite set of tiles in the signal space, they are a good approximation

and resemble the general form of chirplet tiles
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other parts of both chirplet and standard Omega to analyze and plot clusters in the time-

frequency plane.

FIG. 6: Event grams of clustered reasonable random number events. No events exceeded 2 pixels

even with 20,000 generated triggers distributed with uniform time density of 10 events per unit

time.

Although the set of tests are not yet complete, we expect to learn a lot from its appli-

cation. We are investigating at what time density of triggers is necessary to consistently

produce clusters on a segment of fixed length. Moreover, it helps demonstrate the range of

chirplet chains that the algorithm can output. The initial phase of tuning the dimensionless

parameters can also start with this test. To see examples of chirplet chains produced by

the clustering algorithm, see Figure 6. However, seeing as this does not use the chirplet

search’s tiling process, there are limits as to how much can be learned from it. Work has

begun to run chirplet with the new clustering algorithm on Numerical INJection Analysis

(NINJA) Project data. This data consists of either real detector data, or gaussian noise, in-

jected with binary black hole coalescence waveforms of various sizes, spins, and alignments.
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The performance of the algorithm on these tests will help determine whether the threshold

discussed earlier may be lowered, and what other work must be done to finalize the new

chirplet clustering algorithm.
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