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Simulations of pulsar glitches are conducted in order to determine the probability
of detecting gravitational waves produced from these events, using the upcoming
gravitational wave detector: Advanced LIGO. Simulations are conducted through
pseudo-Newtonian hydrodynamic calculation, allowing for a comprehensive assess-
ment of pulsar excited spherical harmonics and the gravitational wave energies they
would produce. Overviews of gravitational waves, the LIGO group, and pulsar glitch
mechanisms are given as well as a brief analysis of the formulation of the pseudo-
Newtonian hydrodynamics used in simulation. Due to time constraints, the prob-
ability of detecting gravitational waves from the pulsar glitch sources could not be
conducted. Simulations of the pinned superfluid model of pulsar glithing for high
perturbation amplitudes show a linear increase of the exited 2f spherical harmonic
mode towards lower, and more realistic, perturbations while other modes decay ex-
ponentially.
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1. INTRODUCTION

The direct detection of gravitational waves will be a monumental achievement for both
physicists and astronomers alike. For physicists, it allows for the direct observation of
gravitation in highly relativistic regimes where Einstein’s Theory of General Relativity can
be tested at it’s strong-field limits. For astronomers, gravitational waves will open a door
to the outer-cosmos, allowing us to see further into the depths of our universe than has ever
been achieved before, and pulsars glitches may be the key to help us do it.

Pulsar glitches are rare and interesting astrological phenomenon, allowing a unique per-
spective into the structure and dynamics of a neutron star. As well as allowing us to probe
the depths of these stars, pulsar glitches also allow us a rare opportunity to detect gravi-
tational waves. Due to their non-radial oscillation, pulsar glitches are capable of emitting
periodic gravitational waves that may be within the range of sensitivity of the forthcoming
gravitational wave detector, Advanced LIGO.

Though the mechanism behind pulsar glitches is not well understood, there are two
competing theories explaining this phenomenon: the star quake model [1] and the pinned
superfluid model [2]. In order to determine the likelihood of detecting gravitational waves
using Advanced LIGO, hydrodynamic simulations of both these models are conducted.

2. BACKGROUND

2.1. Gravitational Waves

There are two theories pertaining to the natural phenomenon known as gravity. There
is Newton’s theory of gravity, and Einstein’s Theory of General Relativity. According to
Newtons theory of gravity, masses feel a gravitational force because all objects in the uni-
verse produce a gravitational field. When any mass in the universe changes position its
gravitational field, stretching throughout the universe, changes instantaneously as does its
associated gravitational force. However, this theory fails to properly explain natural phe-
nomenon occurring around objects with large gravitational fields, such as black holes.

The more commonly accepted description of gravity comes from Einstein’s Theory of
General Relativity. Already stated in his earlier work on special relativity, Einstein adopted
the postulate that the speed of light was the limiting speed of the universe and that no
information could be transferred faster than the speed of light. Gravitational fields are a
form of information, for they communicate the position of masses in the universe, and so
are held to this constraint. Einstein showed in his work that gravitational fields propagate
-at the speed of light- and as time-dependent distortions in the fabric of space-time. This
propagation of warped space-time is what is called a gravitational wave.

Gravitational waves are generated by time-varying quadrupole moments. In laymen
terms, this means that gravitational waves are produced from any accelerating, non-
symmetric, object. The reason we have yet to detect these waves is that gravitational
waves produced from everyday objects moving with a time-varying quadrupole moment are
extraordinarily small. Only relativistic or extremely massive objects produce gravitational
waves of any significance, so the only possible source of gravitational waves must come from
astrological bodies.
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2.2. Advanced LIGO

LIGO (Laser Interferometer Gravitational-Wave Observatory) is a joint project between
the California Institute of Technology, the Massachusetts Institute of Technology, funded by
the National Science Foundation. The projects ultimate goal is the detection of gravitational
waves from astrological sources. The LIGO group currently uses two interferometers to
detect these waves, one at Hanford, WA and the other at Livingston, LA [3]. The reasoning
behind using more than one detector and location is to verify and locate the source of a
detected gravitational wave. If a gravitational wave is detected at one location a detector at
the other location should sense the same gravitational wave -travelling at the speed of light-
milliseconds later. This helps validate the detection of a gravitational waves by eliminating
false positives; if one detector has a reading, but the other does not, the reading can be
ignored, but if both detectors do have a reading, due to the time delay between detectors,
the relative location of the source of the gravitational wave can be deduced.

Gravitational waves distort space transverse to their propagation [4]. This distortion
a↵ects matter by stretching the space between matter along one direction, and contracting
it along the orthogonal direction, along the transverse plain of the wave. So to detect
gravitational waves an interferometer is used to exactly measure distances between two sets
of two points, the later two being orthogonal to the first two, in hopes of seeing the distance
between one set stretch and the other contract.

An interferometer is so named because it is a device used to interfere waves. The LIGO
interferometer’s are L-shaped devices that split a single laser beam in two and send these
beams down the two perpendicular arms of the detector. At the ends of each of these arms
are two suspended mirrors where the split laser beam can reflect back and forth, gaining
intensity, and return back down the arms to intersect with its other half. The wavelengths of
the two laser beams, upon intersection, interfere with one another. The phase of the lasers
are dependent on the distance travelled by the lasers, and so if the distance travelled by the
two laser beams are the same, then the phases of the two beams will be the same. If the
phases of any two colliding waves are the same, they will undergo destructive interference
and completely cancel out. The two laser beams completely cancel out leaves no light to
be observed by the photo-detector situated at the end of the intersecting beams, indicating
that no gravitational wave has been detected (Fig:1).

A gravitational wave incident on one of LIGO’s detectors would cause the lengths of
one of the arms of the device to stretch while causing the other to contract. This would
result in a di↵erence in phase between the two interfering laser beams, causing the beams
to not completely cancel each other, allowing some light from the beams to hit the photo-
detector. This experiment is simple in principle but di�cult in practice because the amount
of stretching and contraction that would occur for an incident gravitational wave is minute,
around the order of 10�18 meters for the current detector set-up [5]. Because of this, the
interferometer detector must be very sensitive and great pains must be taken to eliminate
unwanted vibrations in the system, but that’s not the only reason one would want to increase
the systems sensitivity.

Gravitational waves propagate through space virtually una↵ected by interfering masses
or gravitational fields, but they do dissipate as they travel, much like a ripple in a stream.
The level of sensitivity of the interferometer is what determines the kinds of gravitational
wave sources we are able to detect, and how far these sources can be for the detectors to
detect their waves. In order to increase our scope of detection, the level of sensitivity of the
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FIG. 1: Diagram of a basic interferometer illustrating one method of noise reduction: the hanging
of mirrors by thread in order to isolate them from seismic disturbances. The diagram also depicts
an incident gravitational wave and its transverse field causing one arm of the detector to stretch
while the other contracts, causing the intersecting laser phases to di↵er, allowing light to hit the
photo-detector.

interferometers must be increased. The current LIGO project’s detectors has a range of sen-
sitivity from 40Hz to 200Hz, but up till now no gravitational waves have yet been detected.
With new technologies at their disposal, the LIGO group is currently under way on the next
generation of gravitational wave detectors, to be called Advanced LIGO. This revamp to the
LIGO detectors, slated to start its experimental run in 2015, will raise the sensitivity of the
LIGO detectors by a factor of ten in the range of maximum sensitivity: 100Hz-200Hz, while
also bringing the lower limit down to 10Hz, thus allowing the detectors to pear out at 1000
times as many galaxies than it had before (Fig:2) [3]. With the completion of Advanced
LIGO so close at hand, and with only a handful of theorised sources for gravitational waves,
we wish to calculate the likelihood of detecting gravitational waves from one of the more
promising sources we know of: pulsar glitches.

2.3. Pulsar Glitches

Pulsars are rapidly rotating neutron stars that emit radiation along their magnetic axis’.
The rotation of a neutron stars cause the magnetic fields, contained in these stars, to form
electric fields. Electrons, passing through these electric fields, are accelerated and give o↵
radiation. Though radiation from a pulsar is emitted at a constant rate, the reason behind
the ”pulses” of a pulsar are due to a misalignment of the magnetic axis of the neutron
star and its rotational axis (Fig:3). As the star rotates, radiation emitted along the stars
magnetic axis periodically cross Earth’s line of sight, causing observers on Earth to see a
”light house e↵ect”. The period of rotation of pulsars gradually decreases over time, but
occasionally show a sudden increases, or ”glitch”.

Though first discovered in 1969, occurring in the Vela pulsar (PSR 0833 -45), pulsar
glitches are astrological phenomenon that are not well understood, but are characterised by
a sudden increase in rotational frequency followed by a relaxation period where the pulsar
returns to its pre-glitch state (Fig:4) [6] . The fractional increase in angular velocity of
glitches is typically of the order of 4⌦ /⌦ = 10�9 to 10�6, the time-scale for which ranges
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FIG. 2: Scaled model illustrating the reach of Advanced LIGO (purple), as compared to LIGO
(orange), where each white dot represents a galaxy and where specific notable regions of local space
are marked. Advanced LIGO with its factor of 10 increase in sensitivity is able to see 10 times
farther into the cosmos and thus have a volume of detection 1000 times greater than that of LIGO.

FIG. 3: Illustration of a pulsar depicting the neutron star, it’s magnetic field, and its incongruous
rotational and magnetic axis.

from a few minutes to a few hours; the relaxation period of a pulsar glitch occurs over a
much longer time-scale, ranging from months to years [7].

The rotational energy gained during a pulsar glitch can be as much as 1036J , but this
increase in energy does not correlate to any change in the electromagnetic signature of the
pulsar [7]. This indicates that the cause of glitches in pulsars cannot be contributed to
external forces such as electromagnetic torques, but must instead be caused by internal
forces. The two models explaining the sudden increase in rotational frequency of a pulsar
are the starquake model and the pinned superfluid model.
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FIG. 4: Data of the first pulsar glitch recorded, taken from the Vela pulsar (PSR 0833 -45). Data
clearly shows a sudden acceleration, or decrease in rotational period, and a gradual return to its
pre glitch period.

3. MODELS OF PULSAR GLITCHES

Theoretically determined from neutron density and the interior temperature, and obser-
vationally confirmed using post-glitch relaxation time-scales, it is evident that neutron stars
contain superfluid interiors [7]. For neutron stars this superfluid interior acts as an angu-
lar momentum reservoir. As the angular momentum of a pulsar spins down, a di↵erential
rotation develops between the crust and superfluid layers since the spin-down rate of the
superfluid is slower than the crust. The two di↵erent models of pulsar glitches di↵er from
this point on.

The star quake model explains pulsar glitches to be caused by a sudden cracking, or
quake, of the neutron stars solid outer shell. The crust of a neutron star is a rigid layer
that floats atop a neutron-proton liquid core; as the neutron stars angular momentum spins
down, the di↵erent rotation between the crust and superfluid layers causes stress on the
crust. Eventually the crust will crack and reform, during which the moment of inertia for
the star is suddenly decreased. In order to conserve angular momentum, the stars angular
velocity must increase, causing a glitch.

The pinned superfluid model explains that the neutron superfluid vortices are pinned to
the lattice of the crust. As the di↵erential rotation of crust and superfluid layers increases,
the superfluid layer will unpin causing a sudden exchange of inertia from the inner superfluid
layer, to the outer crust layer. This exchange of inertia causes the stars angular momentum
to spike, or in other words, causes the pulsar to glitch.
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4. GLITCH SIMULATIONS

Simulations of pulsar glitches are conducted by pseudo-Newtonian hydrodynamic simu-
lation of normal pulsars using code formulated by Jinho Kim of Seoul National University
[9]. The use of hydrodynamic analysis for the simulation of pulsar glitches is unique. Typi-
cally, those wishing to simulate pulsar glitches, for use in examining the gravitational waves
they may produce, use the perturbation method; the perturbation method approximates the
hydrodynamic equations necessary for the analysis of pulsar glitches. The use of the per-
turbation method allows high resolution solutions to be computed, but in order to use this
method one must first assume which of the pulsars spherical harmonic modes is most likely
to produce the gravitational waves one wishes to analyse. The reasoning behind our method
of simulating the full pseudo-Newtonian hydrodynamic set of equations is to not be con-
strained by the necessity of assuming which of our pulsars spherical harmonic modes would
produce the highest gravitational wave energy. Simulating for the full set of hydrodynamic
equations, however, does take more computing power to simulate, and so the resolution of
our solutions are not as high as those simulations performed using the perturbation method.
Our method, though lower in resolution than the perturbation method, allows for all the
spherical harmonic modes of the pulsar to be calculated, allowing us to analyse and compare
all the modes as well as select out the mode that will produce the largest gravitational wave.

4.1. Sudo-Newtonian Formulation

The pseudo-Newtonian assumption used in the hydrodynamic simulations calculated as-
sume weak fields by linearising the Einstein equations. Though it would be ideal to solve
the complete set of Einstein equations, the computing power, as well as the time needed to
do so, make it disadvantageous for us to pursue. Though the full set of equations are not
solved for, preliminary simulations demonstrate an agreement between our code and general
relativistic results, even for compact neutron stars [9].

The pseudo-Newtonian formulation of our simulations assume the following 3+1 metric,

ds
2 = �(1 + 2�)dt2 + (1 + 2�)�1

�ijdx
i
dx

j (1)

describing space-time with only one dynamic variable: � (gravitational potential). This
space-time metric is needed to analyse the energy-momentum tensor of an ideal gas, and its
active mass density:

T
µ⌫ = ⇢0hu

µ
u
⌫ + Pg

µ⌫ (2)

⇢active = T � 2T 0
0 = T

i
i � T

0
0 = ⇢0h

1 + v
2

1� v2
+ 2P (3)

where T is the trace of the energy-momentum tensor, ⇢0 is the mass density, P is the
pressure, uµ is the four velocity of a fluid element, gµ⌫ is the assumed 3+1 space-time metric,
and h is the specific enthalpy defined as:

h = 1 + ✏+
P

⇢0
(4)

From this, the following conservative variables can be defined:
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D = ⇢0W

Si = ⇢0hW
2
vi

⌧ = ⇢0hW
2 � P �D

(5)

where W = 1/
p

1� �ijv
ivj [10]. Using these conservative variables, the hydrodynamic

equations for our assumed space-time metric becomes:

@(
p
�q)

@t
+

@(
p
�gf

i)

@xi
=

p
�g⌃ (6)

for which the conservative variables q, fluxes f i, and the source terms ⌃ are defined as:

q =

2

4
D

Sj

⌧

3

5 (7)

f
i =

2

64
D(vi � �i

↵ )

Sj(vi � �i

↵ ) + P �
i
j

⌧(vi � �i

↵ ) + Pv
i

3

75 (8)

⌃ =

2

4
0

T
µ⌫(@µgµj � ��

µ⌫g�j)
↵(T µ0

@µ(ln↵)� �0
µ⌫T

µ⌫)

3

5 (9)

where
p
�g = ↵

p
� [10]. Taking this hydrodynamic equation and using now a cylindrical

coordinate system (R,Z,�), our assumed space-time metric becomes:

ds
2 = �(1 + 2�)dt2 +

1

1 + 2�
(dR2 + dZ

2 +R
2
d�

2) (10)

for which ↵ =
p
1 + 2� and �

i = 0. Using this new metric, a redefinition of the conser-
vative variables can be completed, allowing our hydrodynamic equation to be recast as:

@(
p
�q)

@t
+

@(
p
�gf

R)

@R
+

@(
p
�gf

Z)

@Z
=

p
�g⌃ (11)

where
p
� = R(1 + 2�)�3/2,

p
g = R(1 + 2�)�1, and where the conservative variables q,

fluxes fR and f
Z , and the source terms ⌃ are now defined to be:

q =

2

66664

D

SR

SZ

S�

⌧

3

77775
(12)

f
R =

2

66664

Dv
R

SRv
R + P

SZv
R

S�v
R

⌧v
R + Pv

R

3

77775
(13)
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f
Z =

2

66664

Dv
Z

SRv
Z

SZv
Z + P

S�v
Z

⌧v
Z + Pv

Z

3

77775
(14)

⌃ =

2

66664

0
�⇢active
1+2�

@�
@R + S�v�

R + P
R

�⇢active
1+2�

@�
@Z

0
SR

@�
@R + SZ

@�
@Z

3

77775
(15)

[9]. Due to axial symmetry in our cylindrical coordinate system, the hydrodynamics
equation ⌃ can be simplified to:

⌃ =

2

66664

0
0

�⇢active
1+2�

@�
@Z

0
SR

@�
@R + SZ

@�
@Z

3

77775
(16)

It is these hydrodynamic equations (11, 12, 13, 14, and 16) that are simulated for in
our code. To solve for these hydrodynamic equations of our neutron star system, the finite
volume method is used. The finite volume method is a common numerical approach to
solving hydrodynamic equations that uses computational grids where each grid enforces the
conservation laws of the system and represents a volume averaged hydrodynamic quantity.
For a further understanding of how the hydrodynamic code is formulated and solved for,
please refer to Jinho Kim’s paper on the subject [9].

4.2. Simulating Perturbations

To simulate the two models of pulsar glitches within our hydrodynamic equations, we
add perturbations to the calculated normal orbit of our star that mimic the e↵ects the two
glitch models would have. Before we begin, two assumptions are made: one being that the
crust of a neutron star is 10% of its total radius, and that the contributions of crust e↵ects
(such as tension), that are not a part of the star quake theory, are negligible and are so
ignored [9].

Simulating for the two di↵erent types of pulsar glitches requires three di↵erent kinds
of perturbation, but every orbital perturbation must first obey the total mass and total
angular momentum conservation equations, which must remain constant throughout the
time evolution of the star:

M0 =

Z
⇢0WdV = 2⇡

Z
⇢0W

(1 + 2�)3/2
RdRdz (17)

J =

Z
S�dV = 2⇡

Z
⇢0W

2
R

2⌦

(1 + 2�)3
RdRdZ (18)
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The first two kinds of perturbation used correspond to the kinds of perturbation created
in the star quake model, while the last is for simulating the perturbation from the pinned
superfluid model. The perturbations modelling the star quake model are:

�⇢0

⇢0
=

(
�e

�( r�c
�1

)2 if r  c

(1 + �)e�( r�c
�2

)2 � 1 if r > c

(19)

where �⇢o stands for the perturbation of the rest mass density, c is the center of the
gaussian profile, �1 and �2 are the width of the gaussian profile, and

�⇢0
⇢0

=

(
�(M)e�( r�c

� )2 if r  c

0 if r > c

�⌦
⌦ =

(
�(J)e�( r�c

� )2 if r  c

0 if r > c

(20)

for which c = 1 � �, and � is the intensity of perturbation. Both these asymmetric
gaussian laws simulate the shifting of the neutron star surface that mimics what occurs
in the star quake model when the forces caused by the di↵erential rotational between the
superfluid and crust layers cause the crust to crack.

The third type of perturbation used is used to simulate the e↵ects of the pinned superfluid
model upon our neutron star simulation. This model simulates rotating velocities near the
surface of the neutron star by assuming an angular momentum transfer from the center
of the star to the surface without changing the density profile of the star. This mimics
the transfer of angular momentum caused by vortex unpinning between internal superfluid
boundaries in the pinned superfuid model. This perturbation is expressed as:

�⇢0
⇢0

= 0

�⌦
⌦ =

(
��(J)e�( r�c

� )2 if r  c

� if r > c

(21)

4.3. Data Analysis

To determine which spherical harmonic mode is most likely to produce gravitational
waves, we use the time series quadrupole moment of the neutron star simulation. For our
numerical approach the quadrupole moments are:

Ixx =
R
T

0
0 (x

2 � 1
3r

2)dV = 2
3⇡

R
⌧+D

(1+2�)5/2
(R2 � 2Z2)dRdZ

Izz =
R
T

0
0 (z

2 � 1
3r

2)dV = 4
3⇡

R
⌧+D

(1+2�)5/2
(�R

2 + 2Z2)dRdZ
(22)

[9]. To classify the quadrupole moment modes, we compared our data to the works of
others and their analysis of pulsar spherical harmonics [11]. To reduce the noise of the data,
and more accurately analyse the discrete modes of our system we first perform a Fourier
transform of the quadrupole moment of our system. Once completed, to extract the energy
of the gravitational wave one must simply take the third time derivative of the quadrupole
moment and use the following relation:
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� (perterbation) 2
f -mode F -mode 2

p1-mode H1-mode 2
p2-mode H2-mode

1.0 ⇤ 10�3 5.613e-16 2.623e-17 2.853e-17 3.204e-16 4.611e-18 3.218e-16
3.3 ⇤ 10�3 5.493e-16 8.561e-17 3.565e-16 8.450e-16 3.742e-17 3.123e-16
6.6 ⇤ 10�3 3.519e-16 3.078e-16 1.960e-15 2.821e-15 1.881e-16 3.586e-16
1.0 ⇤ 10�2 1.063e-16 5.671e-16 5.636e-15 6.572e-15 5.248e-16 4.736e-16

TABLE I: Table of peak gravitational wave energies of the di↵erent excited spherical harmonic
modes simulated. Table shows peak values for four di↵erent simulated perturbation amplitudes.

E = �1

5
h
...
I ij

...
I iji (23)

which, for the Fourier transformed quadrupole moment, correlates to:

E = �3

5
(2⇡f)6A2 (24)

[12]. Where A is the amplitude of the Fourier series, and f is the frequency. For a more
detailed annalysis of how this equation was formulated see Appendix B (8).

5. RESULTS

Here we show the computed gravitational wave energies for four runs of our simulation.
Due to time constraints, only iterations of the pinned superfluid like perturbation were
simulated for. The constant variables applied in these simulations are listed in Appendix
A (8). The parameter changed for these four simulations was the perturbation amplitude
(�) for which the values of 1.0 ⇤ 10�3, 3.3 ⇤ 10�3, 6.6 ⇤ 10�3, and 1.0 ⇤ 10�2 where simulated
for. Realistic values for the perturbation amplitude (�) are between 10�4 and 10�9. The
reasoning behind our selection of values between 10�2 and 10�3 is due to restraints on the
level of resolution placed by our use of the computationally intensive pseudo-Newtonian
hydrodynamics code.

The unit of time used in these computations is 4.92⇤10�3
ms, which arises as a consequence

of our using a set units for calculating the simulations where c-the speed of light, G-the
gravitational mass constant, and Msun-solar mass are all equal to 1.

The results of the four simulations illustrated in figures 5, 6, 7, and 8 show the di↵erent
excited spherical harmonic modes of our simulated pulsar glitches and the gravitational wave
energies they would produce. Figures 7 and 8, pertaining to the �= 6.6⇤10�3, and 1.0⇤10�2

simulations, both show the same two modes being excited, those being the 2
p1 andH1 modes,

with the H1 mode being the dominant mode in both cases. The other two gravitational wave
energy plots (5 and 6), however, are quite dissimilar. Figure 5 shows three excited modes,
with the 2

f mode clearly dominating, while figure 6 shows four excited modes with H1 being
the most prevalent. All modes exept for that of the 2

f mode show an exponential decay in
radiated gravitational wave energy as the perterbaion amplitude decreases; the increasing
amplitude of the 2

f mode as the amplitude of perturbation decreases in value may show
that the 2

f mode holds prevalence as perturbation excitations tend towards more realistic
values (Table:I and Figure:9).
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FIG. 5: Gravitational wave energy emitted, per unit time, by the excited spherical harmonic modes
produced during a pulsar glitch described by the perturbations of the pinned superfluid model, with
perturbation amplitude set to 1.0 ⇤ 10�3. The unit of time for the energy is 4.92 ⇤ 10�3ms.

FIG. 6: Gravitational wave energy emitted by the excited spherical harmonic modes produced dur-
ing a pulsar glitch described by the perturbations of the pinned superfluid model, with perturbation
amplitude set to 3.3 ⇤ 10�3. The unit of time for the energy is 4.92 ⇤ 10�3ms.

6. DETECTION

Due to time constraints, the calculation of the damping time of the gravitational wave
amplitudes produced from the spherical harmonics of our neutron star simulations could not
be completed. The calculation of the damping time is integral in order for one to asses the
possibility of detection of a gravitational wave. The longer the damping time, the longer
the gravitational wave detectors can integrate the signal over increasing the signal-to-noise
ratio and thus increasing the possibility of detection. Without knowing the damping time
scale, there is no way to predict whether or not the gravitational wave detector, Advanced
LIGO, can detect waves emitted from pulsar glitches.
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FIG. 7: Gravitational wave energy emitted by the excited spherical harmonic modes produced dur-
ing a pulsar glitch described by the perturbations of the pinned superfluid model, with perturbation
amplitude set to 6.6 ⇤ 10�3. The unit of time for the energy is 4.92 ⇤ 10�3ms.

FIG. 8: Gravitational wave energy emitted by the excited spherical harmonic modes produced dur-
ing a pulsar glitch described by the perturbations of the pinned superfluid model, with perturbation
amplitude set to 1.0 ⇤ 10�2.The unit of time for the energy is 4.92 ⇤ 10�3ms.

7. CONCLUSIONS

The ultimate goal of these simulations were to determine the likelihood of detecting
gravitational waves from pulsar glitches using the next generation detector, Advanced LIGO.
In order to do so, pseudo-Newtonian hydrodynamics code was created to simulate pulsar
glitches, determined the excited modes of perturbation, and extract the gravitational wave
energy emitted from these mode. The final step, the calculation of the damping time scale
for the amplitudes of the gravitational waves could not be completed due to time constraints.
Simulations of the pinned superfluid model of pulsar glitching show a near linear dependence
in the 2

f -spherical harmonic mode, increasing towards smaller amplitude perturbations,
while other modes showed exponential decay. The simulations conducted, being for high
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FIG. 9: Log plot showing the exited modes in our simulations of pulsar glitches verses the four
perturbation amplitudes simulated for. Simulations mimicked the e↵ect of the pinned supperfluid
model of pulsar glitching. The gravitational wave energies are radiated per unit time, the unit
of time being 4.92 ⇤ 10�3ms. The figure shows an exponential dependence on the perturbation
amplitude for all modes except the f -mode, which shows an approximate linear correlation.

amplitude perturbations, show that at more realistic values the 2
f mode dominates as the

predominant source of gravitational waves due to pulsar glitching.
Further simulation, and time, is needed in order to calculate the excited spherical har-

monic modes produced from the star quake model of pulsar glitching, as well as calculate
the damping time scales of the amplitudes produced from these simulations. Future work
hopes to see long damping time scales, allowing the Advanced LIGO detector ample time
to integrate the gravitational wave over and subsequently detect these waves.
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Appendices

Appendix A: Parameters Used for Simulation

The variable parameters in our code are listed in the table below, as are the values that
where chosen for the four computed simulations. The perturbation amplitude, not listed, is
the only independent variable used, all other values for the four iterations of our simulation
where kept constant.

Parameters

Axis Ration 0.750000000000000

Angular Velocity on Axis 1.481338181293601e-2

Angular Velocity at Surface 1.481338181293601e-2

Max |�⌦/⌦| 6.599999999999939e-3

Total Rest Mass (M0) 1.40000000908893

Total Angular Momentum 1.01617513533747

T 7.526509858163551e-3

Total Proper Mass (Mp) 1.44670798488127

Total Gravitational Mass(Mg) 1.35648708165291

W 9.774741308652812e-2

T/|W | 7.699958106820609e-2

Time Step (dt) 3.187534208752137e-2
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Appendix B: Formulation of Gravitational Wave Energy

Equation 24 calculates gravitational wave energy from the Fourier transform of the
quadrupole moment data calculated from pseudo-Newtonian hydrodynamic simulations of
pulsar glitches. To understand how one arrives to this equation one must refer back to
equation 23, and know the relations:

...
I ij

...
I ij =

...
I
2 =

...
I
2
xx +

...
I
2
yy +

...
I
2
zz

Ixx = Iyy = �2Izz

Using these relations it is easy to see that:

...
I ij

...
I ij = 6

...
I
2
xx

Plugging this back into equation 23, one gets:

E = �6

5

...
I
2
xx

To get the gravitational wave energy from the Fourier transform of the quadrupole mo-
ment, instead of the quadrupole moment itself, one must find a relation between the two.
What the Fourier transform does is to isolate the component waves in the quadrupole mo-
ment data and separate them into discrete waves of di↵erent frequencies. The data output of
the Fourier transformed data is the amplitude of the gravitational wave versus the frequency
of the wave, so the amplitudes of the Fourier transformed data and the quadrupole moment
data are the same. But the energy equation calls for the time derivatives of the quadrupole
moment. Taking the time derivative of a wave function is the same as multiplying the wave
by 2⇡f , so for each time derivative of a wave, one must simply multiply the wave by 2⇡f ,
where f is the frequency of the wave. One must also remember to take the average of the
time derivative, being as that the waves are sinusoidal, and in doing so divide the equation
by a factor of two. Applying all of this to the energy equation 23 results in:

E = �6

5

[(2⇡f)3A]2

2
where A is the amplitude of the Fourier transformed data. This can then be easily

simplified to the energy equation used for our simulations, equation 24:

E = �3

5
(2⇡f)6A2
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Appendix C: Quadrupole Moment Data

Quadrupole moment data (Ixx) taken from the four simulation runs completed and doc-
umented in this paper.

FIG. 10: Quadrupole moment data taken for a pulsar glitch produced by the perturbations mod-
elled by the pinned superfluid theory of pulsar glitches. The quadrupole moment (Ixx) was calcu-
lated for a pulsar with perturbation amplitude 1.0 ⇤ 10�3.

FIG. 11: Quadrupole moment data taken for a pulsar glitch produced by the perturbations mod-
elled by the pinned superfluid theory of pulsar glitches. The quadrupole moment (Ixx) was calcu-
lated for a pulsar with perturbation amplitude 3.3 ⇤ 10�3.
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FIG. 12: Quadrupole moment data taken for a pulsar glitch produced by the perturbations mod-
elled by the pinned superfluid theory of pulsar glitches. The quadrupole moment (Ixx) was calcu-
lated for a pulsar with perturbation amplitude 6.6 ⇤ 10�3.

FIG. 13: Quadrupole moment data taken for a pulsar glitch produced by the perturbations mod-
elled by the pinned superfluid theory of pulsar glitches. The quadrupole moment (Ixx) was calcu-
lated for a pulsar with perturbation amplitude 1.0 ⇤ 10�2.
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Appendix D: Fourier Transformed Data

Fourier transform data of the quadrupole moments (Ixx) taken from the four simulation
runs completed and documented in this paper.

FIG. 14: Fourier transform of the quadrupole moment (Ixx) of a pseudo-Newtonian hydrodynamic
simulation of a the pinned superfluid theory of pulsar glitches, for which the perturbation amplitude
was set to 1.0 ⇤ 10�3.

FIG. 15: Fourier transform of the quadrupole moment (Ixx) of a pseudo-Newtonian hydrodynamic
simulation of a the pinned superfluid theory of pulsar glitches, for which the perturbation amplitude
was set to 3.3 ⇤ 10�3.
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FIG. 16: Fourier transform of the quadrupole moment (Ixx) of a pseudo-Newtonian hydrodynamic
simulation of a the pinned superfluid theory of pulsar glitches, for which the perturbation amplitude
was set to 6.6 ⇤ 10�3.

FIG. 17: Fourier transform of the quadrupole moment (Ixx) of a pseudo-Newtonian hydrodynamic
simulation of a the pinned superfluid theory of pulsar glitches, for which the perturbation amplitude
was set to 1.0 ⇤ 10�32.


