
Building a State Space Model of the GEO600
Control Architechture

Alexander Lombardi

August 11, 2010

1 Introduction

In 1916, Albert Einstein’s Theory of General Relativity predicted the existence
of gravitational waves. Such waves are expected to stretch and contract matter
as they move like ripples on a pond through spacetime. In 1993, the Nobel
Prize was awarded to Russell Hulse and Joseph Taylor for an indirect detection
of gravitational waves from a binary pulsar system. Since then, the focus in the
field of gravitational physics has been to directly detect gravitational waves. Al-
though other methods have been tried, and false detections have been claimed,
the best shot at actual detections unanimously lies with large scale interferom-
etry. In the past two decades, huge strides have been made in the quest to
directly detect gravitational waves using terrestrial laser-interferometers. Such
large scale detectors have been built all over the world, creating an interna-
tional network of detectors searching for gravitational waves from astrophysical
sources such as binary systems of black holes or neutron stars, pulsars, and
supernovae. There are three detectors in the United States that make up the
LIGO experiment. One is located in Livingston, Louisiana with 4 km arms, and
two are located in Hanford, Washington: one with 4 km arms and one with 2
km arms. VIRGO is a 3 km interferometer near Pisa, Italy. TAMA is a 300 m
detector in Japan. The British-German collaboration, GEO600, is a 600 m de-
tector located near Hannover, Germany. None of these detectors has produced
a detection at the present time, but they’ve all achieved huge improvements in
sensitivity, and the continued progression of technology ensures an event rate
suitable to claim detection within the next several years. The GEO600 detector
was built from 1995 to 2001 based on two prototypes from Glasgow Univer-
sity and the Max-Planck-Institut fr Quantenoptik. The project continues with
the addition of the University of Cardiff, and the Albert-Einstein-Institut at
Potsdam and Hannover.

2 The GEO600 Interferometer

The GEO600 detector is a dual-recycled folded arm Michelson interferometer.
For over a century, variations on the original Michelson interferometer have been
used to detect small changes in length. As gravitational waves pass through the
interferometer, it changes the optical path length and therefore, the phase of the
light in the arms of the detector. The measurement that we actually read from
the interferometer then is not actually a length at all. The actual quantity that
we measure from the detector is the change in light power on a photodetector in
the interferometer output. Control systems (which we will discuss later) keep the
interferometer operating on a dark fringe, which means that the light returning
to the beam splitter interferes perfectly, and no light reaches the photodetector.
Instead, the light returns back in the direction of the laser where it hits the
power-recycling mirror and returns into the interferometer arms which allows
the laser power to build up in the detector. This space where the beam power

1

Figure 1: The optical layout of the GEO600 interferometer [5]

builds up is known as the power-recycling cavity. The interferometer uses a
12 W laser that passes through two mode cleaners before entering the beam
splitter and power-recycling cavity. Because of this cavity, the power in the
GEO600 detector reaches about 10 kW at the beam splitter. When the mirrors
of the interferometer are displaced by gravitational waves, or some noise, the
interference back at the beam splitter is not perfectly destructive, and some
light escapes into the interferometer output. Here, there is another mirror that
puts this light back into the interferometer to form the signal-recycling cavity.
This amplifies this output signal to reduce the effects of shot noise on sensitivity.
This signal is further enhanced by an output modecleaner. A simplified diagram
of the beam path in the detector is shown in figure 1.

GEO600 is currently beginning an upgrade program called GEO-HF, the aim
of which is to increase the high frequency sensitivity of the detector. GEO-HF
will require some new technologies and changes to the current setup. One such
upgrade is to use squeezed light as the input carrier beam. Other upgrades
include replacing some mirrors, and increasing the power of the laser. Figure
2 shows the sensitivity curve of the current GEO600 detector as it compares
to the LIGO and Virgo detectors. It also shows some reasonable predictions
for how the GEO-HF upgrades will improve the high frequency sensitivity of
the detector. These estimates suggest that GEO may match or exceed the
sensitivity of every other gravitational wave interferometer in the world, for
frequencies above 900 Hz.

I’ve already discussed how the limitations of the detector at high frequencies

2

Figure 2: Sensitivity curve for GEO600 and projections for GEO-HF as com-
pared to the current LIGO and VIRGO detectors [4]

3

Figure 3: A simplified block diagram for a basic feedback-control loop. Here
the two blocks are the plant and the servo. The sensor and actuator are taken
to be part of the plant. [3]

are the result of shot noise on the output photodetector. However, these are not
the only limiting factors on the detector. The detector sensitivity is limited in
the lower frequency range below 40 Hz, due to seismic noise. The region in the
middle has limitations that come from thermo-refractive noise, but I can say
little else on this subject. For the purposes of this project, seismic noise is the
biggest enemy. As with any interferometer, it is important to have arm lengths
that are exactly the same. In an ideal situation (in the absence of all noise and
a gravitational wave signal) the arm lengths of the detector are, in fact, equal,
and the detector operates on a dark fringe. The most difficult task with these
interferometers is isolating and controlling the interferometer components from
noise. It is extremely important to have a quiet detector, so that real signals
stand out. The best way to keep large gravitational wave interferometers at a
sensitive operating point is the use of complex control systems.

3 Control Systems

3.1 Control Theory

Control systems are a method of maintaining some physical parameter at a
predefined value in the presence of some force that may cause deviation in that
parameter. For example, take a free particle moving in three-dimensional space.
We want to keep this particle at some exact coordinate (the operating point),
but there is some varying force pushing on it. A control loop would allow
us to read out the position of the particle, or rather the deviation from the
desired coordinate (the error point), and then produce some signal which uses
an opposing force to push the particle back where we want it.

Control loops are made up of four basic parts. The physical system that you
want to control is called the plant. There is a sensor, which measures the

4

controlled parameter of the plant. It takes in the error point of the physical
system, and puts out the error signal. This error signal becomes the input to
the servo, which is any system that transforms this error signal into feedback.
Finally, there is an actuator, which takes the feedback signal from the servo
and uses it to restore the plant to its operating point. Usually, the sensor and
actuator are considered as part of the plant when talking about feedback loops.
We will see later how this makes sense in a state space model. The block diagram
in figure 3 shows a control loop in its simplest form. All of the loops we make
will be roughly this same form, but with more detail added to the components of
the servo. In the case of the GEO600 interferometer, we wish to control optical
systems: lasers, lenses, and mirrors. This work will focus on the end mirrors
in the Michelson interferometer. Our error point will be the displacement and
rotation of these mirrors due to seismic disturbance. The servo will be a series
of filters that turn these errors into forces and torques which are applied to the
mirrors by a series of actuators.

3.2 Building a Stable Loop

Any linear system can be fully characterized by its transfer function. The trans-
fer function of a system is the ratio of the system’s output to its input as a
complex function of the input signal frequency. The transfer function, because
it is complex, stores information about the amplitude and phase as a function
of frequency. When building a stable control loop, we care about the open loop
transfer function of the system. By open loop, we mean that the loop is not
connected so that it is actively producing feedback for the system. We take all
of the components of our control loop and connect them in series (exactly as
in the closed loop but the final output does not return to the beginning to get
summed into the input). The open loop transfer function, which we will call
open loop gain, is then the ratio of the final output signal to the input signal as
a function of signal frequency. The open loop gain of the system is the product
of all of the individual component gains. Consequently, the order of our filters
in the servo has no impact on the open loop gain.

From the open loop gain, we can tell if the control loop will be stable when it is
closed. When closed, system can be in three different states. If the loop is de-
signed correctly, noise in the system will be suppressed, and the loop succeeds in
keeping the plant near its operating point. We call this loop stable or locked. If
the gain is not set properly, the system may oscillate at some constant frequency,
or if the gain is entirely too low, the system will be completely free running and
it will behave as if the loop is not connected at all. The phase information about
the open loop is also important, because if the phase is wrong, the feedback to
the system may have the opposite of the desired effect, amplifying the noise in
the system.

To make sure the loop is stable, we can plot the open loop transfer function
and examine the amplitude and phase. We look at the phase at the point of

5

Figure 4: This shows some random open loop transfer function (amplitude and
phase as a function of frequency). Notice at the point where the amplitude hits
unity gain (0 dB) the phase reaches its peak, which is clearly above -180 degrees
relative to DC. This is clearly a stable control loop. [3]

unity gain, where the absolute amplitude is one (0 dB). There is typically only
one point in the feedback loop where the transfer function crosses unity gain.
For the loop to be stable, the phase must be above -180 degrees (with respect
to DC) at the unity gain point. In the case where the transfer function crosses
unity gain in multiple places, the previously mentioned criterion must for every
unity gain point. Figure 4 shows a conditionally stable loop. Loops are designed
such that there is a fast drop off after the unity gain point in order to suppress
noise better. The filters are usually chosen so that the phase bumps up just
over the -180 degree mark near the unity gain frequency. Depending on the size
of this bump, there will be a range of frequencies where the unity gain point
can exist. This makes the loop design slightly flexible, though these margins
are typically much smaller than that given in figure 4. If we look at the open
loop transfer function of our control loop and it obeys the above criterion, we
can be sure that the loop will work properly when it is closed.

4 State Space Modeling

A state space model is a method of representing some physical system as a series
of first-order differential equations. These equations relate the state variables
to the input and output variables of the system in order to create a model that

6

completely describes the systems attributes. The name comes from the axes of
the the model space, which represent each state variable of the system. The
state space representation consists of the following two equations:

ẋ = Ax + Bu (1)

y = Cx + Du (2)

where u, y, and x are all vectors containing all of the input, output, and state
variables respectively. (1) is called the state equation. (2) is the output equation.
A and B are matrices that relate the input and state vectors to the first time-
derivative of the state vector. The C and D matrices relate the input and state
vectors to the outputs of the system.

A state space model can be created for any linear system, for which you can solve
the equations of motion.1 These equations can be rearranged to meet the form
of (1) and (2), and from these equations, it is easy to pick out the state variables
to fill our x vector. The redundant state variables are eliminated, if possible,
by recognizing them as time-derivatives of the other state variables. Once the
state vector is identified and complete, the other elements of the equations are
appropriately entered in to the A, B, C, and D matrices. Their position in
the appropriate matrix depends on which state variable they scale (if any), and
their effect on the inputs and outputs of the system.

The A matrix is called the state matrix. It contains the meat of the model. Most
of the information about the system will be contained in the A matrix. B is the
input matrix. It contains all information about how the system is affected by
the inputs. The C matrix relates the state vector directly to the output vector.
This matrix will allow you to choose which variables are read out in the model
and in what order they appear in the output vector. Of course, you could make
the outputs some linear combination of the state variables, but this was not
necessary in any of my models, and no example will be given. The D matrix
allows for direct connection of inputs to outputs. For my purposes, it is always
full of zeros and will largely be ignored in discussion. The dimensions of each
matrix depend on the number of state, input, and output variables. This will
become obvious in the following example.

4.1 Example - A Simple Pendulum

A great deal of my time on this project was spent figuring out how to build and
use state space models in MATLAB. The following example is the first state
space model I created. Because it is simple, and relevant to the rest of this
work, we now consider an undamped, perfectly rigid, single pendulum of mass,
m. We assume that the pendulum rod of length L has no mass. The equation
of motion for this pendulum is

1Nonlinear systems may also be modeled, but it is a more complicated procedure that will
not be discussed in this paper.

7

θ̈L = −g sin θ + F (t) (3)

θ̈ = − g

L
sin θ +

F (t)
L

(4)

where θ is the angular displacement of the pendulum from its rest position on
the vertical axis, and g is the acceleration due to gravity. We see immediately
that this equation does not describe a linear system. However, since we are only
interested in a pendulum with a very small range of motion, we can use the small
angle approximation, sin θ ≈ θ. Within this limit, equation (4) becomes

θ̈ = −g

l
θ +

F (t)
l

(5)

From this, we now know our state and input vectors and can build the A and
B matrices.

x =
[
θ
θ̇

]
u = F (t) (6)

A =
[

0 1
− g

L 0

]
B =

[
0
1
L

]
(7)

We then choose our C matrix so that we can read out the angular displacement
and angular velocity of the pendulum.

y = x =
[
θ
θ̇

]
C =

[
1 0
0 1

]
(8)

Referring back to the our original equations for building a state space model
(considering D to be a zero matrix), our model consists of the following two
first-order differential matrix equations.

ẋ =
[
θ̇
θ̈

]
=

[
0 1

− g
L 0

] [
θ
θ̇

]
+

[
0
1
L

]
F (t) (9)

y =
[
1 0
0 1

] [
θ
θ̇

]
+

[
0
]
F (t) (10)

The input F (t) can be considered as some force pushing on the pendulum at its
center of mass. Later, we will see how this corresponds to forces on the different
masses in the triple pendulum suspention in the GEO600 interferometer.

8

4.2 Constructing a State Space Model in MATLAB

Once you have compiled all of the necessary information about the system you
wish to model, MATLAB makes it very easy to build and connect state space
models and test them. To build the model for a physical system such as the
pendulum I’ve just described, you create the A, B, C, and D matrices and
put them into your MATLAB code. There is a built in function, which takes
these matrices and forms the model. If you intend to connect this model to
other models, it is necessary to be diligent about keeping track of your inputs
and outputs and the order which they appear in your code. Alternatively, and
perhaps a more usefully, you can give names to each input, output and state in
your model and use this information to connect models, and better keep track
of what is happening in your model. The following is the MATLAB code for the
simple pendulum example. It takes in some constant values, builds the matrices
and then creates the state space model with labels.

g = 9.80665; % units: m/sˆ2
l = 1.00; % units: m

A = [0 1; (-g/l) 0];
B = [0; 1/l];
C = [1 0];
D = [0];

pendulum_ss = ss(A,B,C,D,’inputname’,{’Force’},...
’outputname’,{’Displacement’});

In order to create our control loops we will also need to build state space models
for the filters in the servo. Here, it is not so intuitive to build the matrices for
the model. However, MATLAB still makes things easy for us. There are a
series of functions that allow you to build a state space model directly from the
transfer function of the system, which can often be measured using a spectrum
analyzer. If you know the transfer function, you can enter the coefficients of
the polynomials that make up the numerator and denominator, and MATLAB
will use this information to build the state space matrices for you. There is
another function which allows you to enter the poles, zeros, and gain for your
filter, and the matrices are built from there. This is often more convenient as
the interferometer documentation tends to specify the pole-zero combinations
rather than the transfer function.

When we want to examine the transfer function, or check the stability of our
loop, we want to plot this information and analyze it graphically. MATLAB
allows you to plot the frequency response of any state space model or combina-
tion of models with a single function called bode. A Bode plot is a graph of a
transfer function. It graphs the amplitude and phase as a function of frequency.
MATLAB also makes it very simple to test the ramifications if arbitrary im-
pulses in the system. We can put in any function we want and see how the
system responds over time. The function that we use to do this will depend on

9

Figure 5: The simplified version of the interferometer as we imagine it for the
sake of this model.

the type of input we want to simulate. We will see how this is useful when we
build the actual model.

5 Building the Model for the Michelson Loop

Now that we know how to build stable control loops and state space models we
can try to model a real system. The GEO600 interferometer requires hundreds
of control loops to keep its components stable. For the two month duration of
this project, it seemed most sensible to focus on the largest, most important
loop so that a more complex model could be built from this later. The main
Michelson loop is the control for the arm differential in the interferometer. The
way you use an interferometer to take measurements is by finding the difference
in the arm lengths of the detector. In a perfectly quiet environment the GEO
detector would have perfectly equal arm lengths so that the difference between
them is zero and the output to the photodetector is complete darkness. To
tackle this project we thought it best to work with a simplified version of the
interferometer. In this model, we treat the GEO600 detector as the most basic
interferometer as in figure 5. We have a laser, beam splitter, and photodiode
that are all treated as completely stationary. We ignore the mode cleaners and
recycling cavities so that we are left to model only the suspensions at the end

10

of each arm. In the real detector, the arms are folded, so there is an additional
set of mirrors, but we also omit these for simplicity. Not that this is an extreme
simplification of the system optics, but once we have a stable model, adding in
new components is a rather trivial task. This model will be the foundation of
the all inclusive model that can be built over the next several years.

5.1 The GEO600 Triple Pendulum Suspension

To model the Michelson loop, we have two physical systems to model: the
triple-pendulum end suspensions. These two suspensions are identical, so we
build one set of matrices and build two state space models with different input
and output names so that we can differentiate between the two. The triple
pendulum suspension is not as nice as the simple model we’ve already worked
out. A diagram of the suspension, with all variables as they appear in the
code, is given in Appendix A. Appendix B provides a more general view of the
suspension from the two different views [1]. The three masses of the suspension
are each attached to the mass above by four wires. In the case of the upper
mass, the suspension wires are attached to cantilevers that are connected to the
table, which is connected to the ground. For each mass in the pendulum, there
are six degrees of freedom: three of dimensions of displacement, and three of
rotation. Because these masses are attached by several wires, the masses motion
is not only coupled with every other mass, but certain degrees of freedom are
coupled together as well. The six degrees of freedom are longitudinal, sideways,
vertical, pitch, roll, and yaw. Longitudinal is displacement in the direction of
the beam path. This is coupled with the pitch, which is rotation of the mass
in the direction of the beam path. Vertical is straight up and down. Yaw is
rotation about the vertical axis. Sideways is the side to side swinging of the
mass, perpendicular to both the longitudinal and vertical degrees of freedom.
It is coupled with roll, which is rotation about the axis of the beam path.
These couplings lead to a very complicated set of equations. Fortunately, these
equations were solved in 2001 in C. Torrie’s PhD thesis.

Because some of these degrees of freedom do not affect the others at all, it makes
sense to build four separate models for the two pairs of coupled, and the two
uncoupled degrees of freedom. All four models were built in the aforementioned
thesis, but they have been updated several times since, to more accurately
represent the actual suspensions. I have modified them further for the purposes
of modeling the control systems. Since my main goal was to model the main
Michelson loop of the interferometer, we really only care about the longitudinal
and pitch degrees of freedom. The other models have been set up so that they
may be implemented later if necessary, but this is where my work with them
stops. From now on, we are dealing only with our simplified version of the
interferometer, where the end mirrors only move in two (coupled) degrees of
freedom. The actual state space model was built in MATLAB, and the code is
given in Appendix C. The equations of motion were worked out by C. Torrie,
which describe the coupled longitudinal and pitch motion of the masses in the

11

suspension, but will be omitted here, since they are not part of my work. They
can however be easily derived from the A matrix in the code.

For the purpose of implementing local controls, which will be discussed in the
next section, it will be useful to know the resonant modes of this suspension
system. We can find these resonant modes by taking the A matrix that we’ve
devised, and finding the eigenvalues. I have created a MATLAB program which
calculates these values from the A matrix written in the suspension model. This
resonant mode calculator is given in Appendix D.

5.2 Building the Local Controls

Before tackling the filters that make up the Michelson loop it is necessary to
build the local controls for each suspension system. The local controls only
affect the system to which they are attached. The local controls are there to
damp the resonant modes that we calculated using the program in Appendix
D. Our model has four local control models: one for each degree of freedom on
each pendulum. The filters used for the local controls are well documented, so I
needed only the transfer function for each filter and to appropriately name the
inputs and outputs. The code which creates these filters is not contained in this
paper because it is fairly trivial. The block diagram for this model is given in
shown in figure 6.

To make sure that this loop is actually working, we open the loop and use
the bode function as we discussed before. We examine the open loop transfer
function as shown in figure 7. Notice that you can see the resonant frequencies
in the amplitude. At these points, the amplitude crosses unity gain several
times, but we see that the phase is generally increasing over this range, and our
criterion for stable feedback holds.

5.3 Building the Michelson Filters and Connecting the
Loop

Until this point, we have largely ignored what the Michelson loop is doing. As
with any interferometer, the piece of information we are most interested in is
the difference in the arm lengths of the interferometer, which is measured by
the laser path distance. This control loop reads out the displacement of the
end mirrors, finds the difference between them, and then puts whatever force
is necessary back on one or both of the mirrors so that the difference in arm
lengths returns to zero. A sketch of this loop is given in figure 8. While the
local controls focus on controlling the motion of the mirrors themselves, the
Michelson controls are controlling the the difference between the lengths in the
arms. This requires many more filters thank the local controls did, but the
process is exactly the same. The filters used to control this parameter are well
documented, so we may use their transfer function, pole-zero combinations, or

12

Figure 6: Top: Block model for the filters in the local controls. Bottom: How
the local controls connect to the suspension systems.

13

Figure 7: Open loop gain for the suspension with local controls attached.

14

Figure 8: Block model diagram for the Michelson control loop

notch frequency to build each filter and then connect them by name. A block
diagram containing each of these filters is shown in figure 9.

Now that we have built the pendulum model, the local controls and the Michel-
son controls, we must connect everything and test it out. Figure 8 shows the
general picture of how the Michelson loop is connected. Figure 10 is the all
inclusive diagram of the state space model for the Michelson loop. Every block,
including the summations and the split-path points has its own state space
model. The original diagram (without the fancy color coding) can be found in
the Appendix.

5.4 Testing the Model

The model is now completely constructed, but we must remember that every
feedback loop must satisfy a specific phase criterion. As before, we look at the
open loop transfer function of the system (figure 11). In this plot we see that the
unity gain point is right around 150 Hz. In the filters for the Michelson loop, we

15

Figure 9: Block Diagram of all filters in the Michelson controls

Figure 10: Block Diagram for the entire Michelson control loop. This includes
the North and East pendula, each with 2 local controls, the summing block
which finds the arm difference, the optical gain, and all of the michelson filters.

16

Figure 11: Open loop transfer function for the entire michelson loop.

provide an appropriate amount of gain for this to occur. We want this because
the filter design gives us a bump in phase with a small margin right around 150
Hz. We see then that the phase is above 0 degrees (-180 with respect to DC)
for a small frequency range surrounding the unity gain frequency. This phase
margin creates the stable loop that we desire and we are now ready to test the
model.

We must remember that the Michelson loop’s job is to make the difference in
the interferometer arm lengths zero. So we test to see what happens if we push
on one of the mirrors with some arbitrary unit force impulse. The results of
this simulation are shown in figure 12. We see that if you push on one mirror,
the other mirror responds by moving with the same direction an amplitude.
Pushing on the other mirror works the same way. If both mirrors are being
displaced by the same amount, the arm difference is zero as we want it to be.
In this case, the loop is working to keep one pendulum moving with the other,
and takes about 12 seconds to ctop oscillating. Now if we apply a differential
impulse to both mirrors simultaneously (figure 13), the mirrors move opposite

17

Figure 12: Test impulse on east and north pendula, separately, to view how the
Michelson loop responds on the other pendulum. Mirrors oscillate sympatheti-
cally.

each other with the same amplitude, as they should. We notice in this case that
it takes the masses about 0.1 seconds to come to a complete stop, much shorter
than in the impulse (of equal magnitude) in figure 12. This means that our loop
is also doing a good job of damping the oscillations.

Now that we’ve checked that the model reacts the way its supposed to, the
last thing I wanted to do while working at GEO600, was to see how accurately
this model reflects the real detector. To do this we plot the open loop transfer
function for the model on top of the open loop transfer function of the real
interferometer. To find the open loop transfer function in the GEO600 interfer-
ometer, we had to create a new test input and two outputs in the loop. The only
way to get the transfer function was to take a measurement while the detector
was in lock. The measurement was taken by connecting the new input and out-
puts to a spectrum analyzer. Signals over a large range of frequencies were put
into the input and read out immediately after they were put into the loop. The
other output was put just before the new test input, so we could take the ratio
of outputs at the end of the loop to those just after the input, giving us a large
set of complex points, which collectively form the open loop transfer function

18

Figure 13: Response to differential impulse on end mirrors. Mirrors oscillate in
opposite directions with equal magnitude.

19

Figure 14: Comparison of the state space model to the actual GEO600 Michelson
loop. The model is in blue, while the actual detector is in red. Data points for
the red curve were taken around the unity gain frequency

of the real system. The model easily generates this transfer function with a
few minor adjustments to the input and output names and the bode function.
This comparison plot is given in figure 13. Data points for the detector transfer
function were taken around the unity gain frequency because it is relatively well
behaved. We see that in this range, the model matches with the real detector
quite well. Out side of this range, the transfer functions diverge quite a bit, but
since we are modeling the control system, we mostly care about the frequencies
around unity gain.

5.5 The Future of the State Space Model

For the limited time that I spent at GEO600, it seems that this state space
model is a perfectly good representation of the real detector. As mentioned
earlier, this is a heavily simplified version of the Michelson interferometer. The
hope is that in the near future, someone can pick up this work and add in many

20

of the components that I’ve neglected for the sake of time. This will lead to a
much more accurate model that could be extremely useful in creating a quieter
detector. The model can be used to verify the calibration of the detector. It
will also be a powerful tool for investigating glitches in the detector. If there is a
recurring glitch somewhere in the detector, the state space model can be useful
in hunting the source, because you can easily inject arbitrary signals into the
model at any point you wish, and examine the ramifications. This state space
model has the potential to be an extremely important element in improving the
data quality from the GEO600 detector.

Acknowledgements

I would like to thank Prof. Bernard Whiting, Prof. Guido Meuller, and the
University of Florida Physics Department for accepting me into this program.
Antonis Mytidis and Kristin Nichola for arranging all of my travel and finances,
checking in on me during my travels, and especially for picking me up at the
Jacksonville airport in the middle of the night. Prof. Laura Cadonati for men-
toring me, assisting me in becoming a part of this program, and being an all-
around excellent advisor. Prof. Bruce Allen and all of the people at the Albert
Einstein Institute in Hannover for accepting me into their group and making me
feel important. Also, for inviting me out with them during and after work for
lunch or drinks. Hartmut Grote and the rest of the the GEO family for letting
me take up space and occasionally kick the detector out of lock, and for making
me feel like a part of their family. A special thanks to Marc, for cooking nearly
all of my lunches. They were delicious. Most of all, thank you to Dr. Jonathan
Leong, for providing all the knowledge and encouragement I could ask for in
this project, being an excellent mentor, and also showing me an excellent time
in Germany. Lastly, I would like to thank the National Science Foundation for
funding this program. Without their support, none of this would have been
possible.

21

Appendix

22

Appendix C

% pendlocal.m - Alexander Lombardi - July 6, 2010
% Generates state space model for triple pendulum in longitudinal

and pitch
% degrees of freedom and calculates the transfer function of the

system
% credit: Calum Torrie and Ken Strain for all input values and

equations of
% motion

global pend %% declares global variable "pend"
extra =0; g =9.8; bd=0;
pend.title = ’Pendulum parameters and derived properties’;

%**

% UPPER MASS CALCULATED FROM MOFI2.m (C:/accounts/calum/3pend/jif)

%% dimensions of UPPER MASS (square)
ux = 0.1;
uy = 0.3;
uz = 0.07;
I1x = 0.0459+(uz/2+0.02)ˆ2*extra; %KAS %% moment of

inertia (roll)
I1y = 0.0072+(uz/2+0.02)ˆ2*extra; %KAS %% moment of

inertia (pitch/longitudinal)
I1z = 0.0583; %ignore extra KAS

%% moment of inertia (yaw)
m1 = 5.7+0.1+extra; % +0.1 for clamps and blades

etc.. +0.4 for MCE KAS

%**

%dimension of INTERMEDIATE MASS (cylinder)
ix = 0.1; %% intermediate mass thickness
ir = 0.09; %% intermediate mass radius
den2 = 2202; % density (fused silica)
I2x = 0.0227; %% moment of inertia (roll)
I2y = 0.01601; %% moment of inertia (pitch/

longitudinal)
I2z = 0.01601; %% moment of inertia (yaw)
m2 = 5.6; % calculated from bladejif2.

xls
%***

%dimensions of TEST MASS (cylinder)
tx = 0.1; %% test mass thickness
tr = 0.09; %% test mass radius
den3 = 2202; % density (fused silica)
I3x = 0.0227; %% moment of inertia (roll)
I3y = 0.01601; %% moment of inertia (pitch/

longitudinal)
I3z = 0.01601; %% moment of inertia (yaw)
m3 = 5.6; % calculated from bladejif2.

xls
%**

l1 = 0.42; % upper wire length
l2 = 0.187; % intermediate wire length
l3 = 0.28; % lower wire length

%**

nw1 = 2; % number of wires per stage (2
or 4)

23

nw2 = 4; % = number of cantilevers (if
fitted)

nw3 = 4;

%***

r1 = 250e-6; % radius of upper wire
r2 = 175e-6; % radius of intermediate wire
r3 = 135e-6; % radius of lower wire

% Geppo measurements of bounce
frequency uncoupled

%**

Y1 = 1.65e11; % Youngs Modulus of upper wire
(s/steel 302)

Y2 = 1.65e11; % Youngs Modulus of
intermediate wire (s/steel 302)

Y3 = 7e10; % Youngs Modulus of lower wire
(fused silica)

%**

ufc1 = 2; % uncoupled mode frequency of
cantilever stage(=0 for no cantilevers)

ufc2 = 3;
ufc3 = 0;

% NB:- uncoupled mode frequency- the frequency observed for a
cantilever in a particular

% stage supporting only the mass of that stage

%***

%these parameters are least certain - likely to have major errors in
d0 -

%d2 due to blade deflection and added masses (added masses NOT in
model for

%MCe/n mirrors

d0 = -0.004; % height of upper wire break-
off (above c.of m. upper mass)

d1 = 0.014; % height of intermediate wire
break-off (below c.of m. upper mass)

d2 = 0.001; % height of intermediate wire
break-off (above c.of m. of int. mass)

d3 = 0.009; % height of lower wire break-
off (below c.of m. intermediate mass) silica fibre flex from BS

d4 = 0.009; % height of lower wire break-
off (above c.of m.test mass) silica fibre flex from BS

%**

% X direction separation

su = 0.00; % 1/2 separation of upper
wires

si = 0.03; % 1/2 separation of
intermediate wires

sl = 0.005; % 1/2 separation of lower
wires

%**

% Y direction separation

24

n0 = 0.03; % 1/2 separation of upper
wires at suspension point

n1 = 0.04; % 1/2 separation of upper
wires at upper mass

n2 = 0.045; % 1/2 separation of
intermediate wires at upper mass

n3 = ir-0.0035+0.01; % 1/2 separation of
intermediate wires at intermediate mass

n4 = ir-0.0035+0.005; % 1/2 separation of lower
wires at intermediate mass

n5 = tr-0.0035+0.005; % 1/2 separation of lower
wires at test mass

% NB:- i.e. n4 = (radius) - (flat) + (break-off bar)

%***

% local control units mechanical details

leverarmrt = 0.03; % half spacing of coils acting
on tilt, rt

leverarmrz = 0.08; % half spacing of coils acting
on rotation, rz

leverarmrl = 0.08; % half spacing of coils acting
on roll, rl

lever_pitch = leverarmrt; % notation change
lever_roll = leverarmrl; % notation change
lever_yaw = leverarmrz; % notation change

%local control gains
gain = 0.4;
gainzrtrl = gain; % vertical, z, tilt, rt, roll rl (coils on top of

upper mass)
gaint = gain.*2; % sideways, t (coil on one end of upper mass)
gainlrz = gain; % longitudinal, l, rotation, rz (coils on long rear

side of mass)

kc1 = 1/2*(2*pi*ufc1)ˆ2*m1; %% spring constant of cantilever stage
1

kc2 = 1/2*(2*pi*ufc2)ˆ2*m2; %% spring constant of cantilever
stage 2

kw1 =Y1*pi*r1ˆ2/l1*nw1/2; %% spring constant of upper wire (s/
steel 302)

kw2 =Y2*pi*r2ˆ2/l2*nw2/2; %% spring constant of intermediate
wire (s/steel 302)

kw3 =Y3*pi*r3ˆ2/l3*nw3/2; %% spring constant of lower wire (
fused silica)

if (kc1==0)
k1=kw1;

else
k1=kc1*kw1/(kc1+kw1); %% combining spring constants for

upper suspension total
end
if (kc2==0)

k2=kw2;
else

k2=kc2*kw2/(kc2+kw2); %% combining spring constants for
lower suspension total

end
k3=kw3;

%**

25

% allows choice of 2 wires to set separation
% in X-direction wires must be vertical
s0=su; %% 1/2 separation of upper wires
s1=su; %% -->
s2=si; %% 1/2 separation of intermediate

wires
s3=si; %% -->
s4=sl; %% 1/2 separation of lower wires
s5=sl; %% -->

%**

m13 = m1+m2+m3; %% combining U,I, and T masses
m23 = m2+m3; %% combining I and T masses

%***

% cosine and sine of the angle the wire makes with the vertical (z)

si1=(n1-n0)/l1; % sin(omega1)
si2=(n3-n2)/l2; % sin(omega2)
si3=(n5-n4)/l3; % sin(omega3)

c1=(l1ˆ2-(n1-n0)ˆ2)ˆ0.5/l1; % cos(omega1)
c2=(l2ˆ2-(n3-n2)ˆ2)ˆ0.5/l2; % cos(omega2)
c3=(l3ˆ2-(n5-n4)ˆ2)ˆ0.5/l3; % cos(omega3)

%**

% longitudinal and pitch equations of motion
% errors in some terms corrected 6/99

k11 = -m13*g*d0/I1y-2*k1*s0ˆ2*c1ˆ2/I1y-m23*g*d1/I1y-2*k2*s2ˆ2*c2/I1y
-m23*g*d1ˆ2/I1y/l2/c2 ...

-m13*g*d0ˆ2/I1y/l1/c1-m13*g*s0ˆ2*si1ˆ2/I1y/l1/c1-m23*g*s2ˆ2*
si2ˆ2/I1y/l2/c2;

k12 = -m23*g*d1/I1y/l2/c2+m13*g*d0/I1y/l1/c1;
k13 = -m23*g*d1*d2/I1y/l2/c2+2*k2*s2ˆ2*c2ˆ2/I1y+m23*g*s2ˆ2*si2ˆ2/l2/

c2/I1y;
k14 = +m23*g*d1/I1y/l2/c2;
k15 = 0;
k16 = 0;

k21 = +m13*g*d0/m1/l1/c1-m23*g*d1/m1/l2/c2;
k22 = -m13*g/m1/l1/c1-m23*g/m1/l2/c2;
k23 = -m23*g*d2/m1/l2/c2;
k24 = +m23*g/m1/l2/c2;
k25 = 0;
k26 = 0;

k31 = +2*k2*s2ˆ2*c2ˆ2/I2y-m23*g*d2*d1/I2y/l2/c2+m23*g*s2ˆ2*si2ˆ2/I2y
/l2/c2;

k32 = -m23*g*d2/I2y/l2/c2 ;
k33 = -m23*g*d2/I2y-2*k2*s2ˆ2*c2ˆ2/I2y-m3*g*d3/I2y-2*k3*s4ˆ2*c3ˆ2/

I2y-m23*g*d2ˆ2/I2y/l2/c2 ...
-m3*g*d3ˆ2/I2y/l3/c3-m23*g*s2ˆ2*si2ˆ2/l2/I2y/c2-m3*g*s4ˆ2*

si3ˆ2/l3/I2y/c3;
k34 = +m23*g*d2/I2y/l2/c2-m3*g*d3/I2y/l3/c3;
k35 = -m3*g*d3*d4/I2y/l3/c3+2*k3*s4ˆ2*c3ˆ2/I2y+m3*g*s4ˆ2*si3ˆ2/l3/

I2y/c3;
k36 = +m3*g*d3/I2y/l3/c3;

k41 = +m23*g*d1/m2/l2/c2;
k42 = +m23*g/m2/l2/c2;
k43 = +m23*g*d2/m2/l2/c2-d3*m3*g/m2/l3/c3;
k44 = -m23*g/m2/l2/c2-m3*g/m2/l3/c3;
k45 = -m3*g*d4/m2/l3/c3;
k46 = +m3*g/m2/l3/c3;

26

k51 = 0;
k52 = 0;
k53 = +2*k3*s4ˆ2*c3ˆ2/I3y-m3*g*d4*d3/l3/I3y/c3+m3*g*s4ˆ2*si3ˆ2/I3y/

l3/c3;
k54 = -m3*g*d4/I3y/l3/c3;
k55 = -m3*g*d4/I3y-2*k3*s4ˆ2*c3ˆ2/I3y-m3*g*d4ˆ2/I3y/l3/c3-m3*g*s4ˆ2*

si3ˆ2/I3y/l3/c3;
k56 = +m3*g*d4/I3y/l3/c3;

k61 = 0;
k62 = 0;
k63 = +g*d3/l3/c3;
k64 = +g/l3/c3;
k65 = +g*d4/l3/c3;
k66 = -g/l3/c3;

%**
% masses in descending order (top = 1, intermediate = 2, mirror = 3)
% angle/displacement angle/displacement angle/displacement
% unphysical damping used to make open loop phase plots readable
% set b = 0 for closed loop plots

%%

%% state space matrices pitch and longitudinal
%%

A=[0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
k11 k12 k13 k14 k15 k16 -bd 0 0 0 0 0
k21 k22 k23 k24 k25 k26 0 -bd 0 0 0 0
k31 k32 k33 k34 k35 k36 0 0 -bd 0 0 0
k41 k42 k43 k44 k45 k46 0 0 0 -bd 0 0
k51 k52 k53 k54 k55 k56 0 0 0 0 -bd 0
k61 k62 k63 k64 k65 k66 0 0 0 0 0 -bd];

B=[0 0 0 0 0 0 -m13*g*d0/I1y/l1/c1 +m13*g/m1/l1/c1 0 0 0 0
0 0 0 0 0 0 0 1/m1 0 0 0 0
0 0 0 0 0 0 0 1/m1 0 0 0 0
0 0 0 0 0 0 0 0 0 1/m2 0 0
0 0 0 0 0 0 0 0 0 0 0 1/m3
0 0 0 0 0 0 1/I1y 0 0 0 0 0
0 0 0 0 0 0 1/I1y 0 0 0 0 0
0 0 0 0 0 0 0 0 1/I2y 0 0 0
0 0 0 0 0 0 0 0 0 0 1/I3y 0

]’;

C=[0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0];

D=[0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0];

% Generate ss model for east pendulum
lpneast = ss(A,B,C,D,’statename’,{’sq1e’ ’sx1e’ ’sq2e’ ’sx2e’ ’sq3e’

’sx3e’ ’sQ1e’ ’sv1e’ ’sQ2e’ ...
’sv2e’ ’sQ3e’ ’sv3e’}, ’inputname’,{’x0e’ ’LLCe’

’F1e’ ’F2e’ ’F3e’ ...

27

’PLCe’ ’tau1e’ ’tau2e’ ’tau3e’},’outputname’,{’
x1e’ ’x2e’ ’x3e’ ...

’q1e’ ’q2e’ ’q3e’});

% Generate ss model for north pendulum
lpnnorth = ss(A,B,C,D,’statename’,{’sq1n’ ’sx1n’ ’sq2n’ ’sx2n’ ’sq3n

’ ’sx3n’ ’sQ1n’ ’sv1n’ ’sQ2n’ ...
’sv2n’ ’sQ3n’ ’sv3n’}, ’inputname’,{’x0n’ ’LLCn’

’F1n’ ’F2n’ ’F3n’ ...
’PLCn’ ’tau1n’ ’tau2n’ ’tau3n’},’outputname’,{’

x1n’ ’x2n’ ’x3n’ ...
’q1n’ ’q2n’ ’q3n’});

% Generate split after output to feed back to local control
A=[];B=[];C=[];D=[1;1];
splitbackxe = ss(A,B,C,D,’inputname’,{’x1e’},’outputname’,{’x1eout’

’x1efeed’});
A=[];B=[];C=[];D=[1;1];
splitbackqe = ss(A,B,C,D,’inputname’,{’q1e’},’outputname’,{’q1eout’

’q1efeed’});
A=[];B=[];C=[];D=[1;1];
splitbackxn = ss(A,B,C,D,’inputname’,{’x1n’},’outputname’,{’x1nout’

’x1nfeed’});
A=[];B=[];C=[];D=[1;1];
splitbackqn = ss(A,B,C,D,’inputname’,{’q1n’},’outputname’,{’q1nout’

’q1nfeed’});

% Generate local controls
localctrl;

% create single model of east pendulum connected to local controls
inputs = {’groundxe’ ’F3e’};% ’groundqe’};
outputs = {’x1eout’ ’x2e’ ’x3e’ ’q1eout’ ’q2e’ ’q3e’};
pendlocale = connect(lpneast,localeast,splitbackxe,splitbackqe,

inputs,outputs);

% create single model of north pendulum connected to local controls
inputs = {’groundqn’};
outputs = {’x1nout’ ’x2n’ ’x3n’ ’q1nout’ ’q2n’ ’q3n’};
pendlocaln = connect(lpnnorth,localnorth,splitbackxn,splitbackqn,

inputs,outputs);

% create a model of the pendulum with controls and every possible
% input/output - east arm
inputs = {’groundxe’ ’groundqe’ ’F1e’ ’F2e’ ’F3e’ ’tau1e’ ’tau2e’ ’

tau3e’};
outputs = {’x1eout’ ’x2e’ ’x3e’ ’q1eout’ ’q2e’ ’q3e’};
totalpende = connect(lpneast,localeast,splitbackxe,splitbackqe,

inputs,outputs);

% create a model of the pendulum with controls and every possible
% input/output - north arm
inputs = {’groundxn’ ’groundqn’ ’F1n’ ’F2n’ ’F3n’ ’tau1n’ ’tau2n’ ’

tau3n’};
outputs = {’x1nout’ ’x2n’ ’x3n’ ’q1nout’ ’q2n’ ’q3n’};
totalpendn = connect(lpnnorth,localnorth,splitbackxn,splitbackqn,

inputs,outputs);

28

Appendix D

% modecalc.m calulates the mode frequencies of a triple pendulum in
the

% longitudinal and tilt degrees of freedom
% written by C. Torrie, Updated and modified by A. Lombardi - July

22, 2010

% call in pendulum values
trippendlp;

% longitudinal and tilt matrx
A_LRT = [k11 k12 k13 k14 k15 k16

k21 k22 k23 k24 k25 k26
k31 k32 k33 k34 k35 k36
k41 k42 k43 k44 k45 k46
k51 k52 k53 k54 k55 k56
k61 k62 k63 k64 k65 k66];

% calculation of the mode frequencies (Hz)

p = sqrt(abs(eig(A_LRT)));
longtilt = p/2/pi

29

References

[1] Torrie, Calum. “Development of Suspensions for the GEO600 Gravitational
Wave Detector”, Ph.D. thesis, University of Glasgow, 2001.

[2] Grote, Hartmut, “Making it Work: Second Generation Interferometry in
GEO600”, Ph.D. thesis, Vom Fachbereich Physik der Universitat Hannover,
2003.

[3] Freise, Andreas, “The Next Generation of Interferometry: Multi-Frequency
Optical Modelling, Control Concepts and Implementation”, Ph.D. thesis,
Vom Fachbereich Physik der Universitat Hannover, 2003.

[4] Leong, Jonathan, “GEO600 Detector Characterization”, GEO Collabora-
tion, 2010.

[5] Willke, B. et al, “The GEO600 Gravitational Wave Detector”, Amaldi,
2001.

[6] Horowitz, Paul and Winfield Hill. “The Art of Electronics”. 2 edition. Cam-
bridge University Press, July 1989.

30

31

32

33

34

