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Abstract. We introduce a new technique for gravitational wave signal detection and

parameter estimation which we hope will provide a more sensitive algorithm to search

for wave signals originating from compact binary coalesences (CBCs) associated with

gamma-ray burst events (GRBs). In order to provide a better search algorithm, we

focus on applying Bayesian inference to the search for signal around GRB events, using

a nested sampling technique to estimate the evidence integral, a notoriously di�cult to

calculate quantity which often limits the applicability of Bayes Theorem. We design a

pipeline tailored to the search for GRB-associated inspirals, and test its performance on

both software injection recovery and o↵-source data. We also explore the usefulness of a

Bayesian coherency test as a means of glitch rejection.
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1. Introduction

The search for gravitational radiation, the rippling of space-time created by all masses
accelerating through space, constantly endeavors towards the accuracy and range needed
to make a confident detection. With recent and ongoing advances made to current inter-
ferometers and a new generation of advanced detectors in the process of being constructed,
detection of a gravitational wave signal may be within our grasp. One of the most promis-
ing sources of gravitational wave signals is the inspiral phase which precedes the coalesence
of compact binary systems. It is conceivable that the first signal detection might be found
in the short, intense burst of radiation emanated during the final stages of inspiral, as the
two objects merge.

As well as being a loud source of gravitational radiation, compact binary coalescences
(CBCs) might also create gamma-ray bursts (GRBs), bright flashes of gamma-rays that
last anywhere from seconds to minutes. These events are distributed isotropically over
the sky, suggesting they originate from extragalactic sources. The brightness of these
bursts infers that they are beamed along the source’s spin axis rather than emitted in all
directions, as this would require a seemingly unphysical release of energy. This beaming
e↵ect is characterized by the jet emission, or opening, angle. Studies of the afterglows of
long-duration GRBs in the x-ray, optical and radio bands reveal that they originate from
supernova events. However, similar surveys to determine the nature of short-duration
GRBs (T90 < 2s) have yet to detect the same afterglow e↵ect. As a result, the possible
scenarios and opening angles for short GRBs are under debate. The coalescence of two
neutron stars or a neutron star and black hole system provides a possible progenitor for
these elusive events. ([1], [2]). When searching for gravitational waves emanating from
GRBs, we can use the knowledge that the �-rays are emitted along the spin axis of the
system. The use of Bayesian inference gives us the tools to incorporate this background
information into our search.

Although CBC events provide sources of high energy gravitational waves that we are
hopeful to detect in the future, sensitivity of the current generation of detectors is limited
by background noise. Transient events, known as glitches, mimic gravitational wave signals,
requiring more rigorous methods for data analysis. For this reason, we investigate the use
of a new technique for improved discrimination of signal above background events, in order
to produce a more sensitive algorithm. The main component of this new search tool uses
a nested sampling technique to estimate the evidence value, a quantity extremely useful
when applying Bayesian statistics

The extent of the project studied under the NSF Gravitational Wave International REU
Grant covered the following areas:

• Incorporating the knowledge that the inclination angle of a binary system must
be lie within the range of the GRB opening angle into the nested sampling search
algorithm.

• Examining the e↵ect of prior knowledge of the inclination angle on parameter esti-
mation when using the nested sampling code. (Section 2)
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• Construction of a pipeline to incorporate the nested sampling technique (see [5] for
more details) into a GRB search. (Section 3)

• Tackling the complications that arise with processing larger lengths of data e�-
ciently and consistently. (Section 3.1)

• Testing code on injections to observe performance and e�ciency (Section 3.2)
• Incorporating a scheme for glitch rejection into the pipeline, using a Bayesian co-
herency test introduced by [5]. (Section 4)

1.1. Bayesian Statistics. Bayesian inference, based on simple probability theory, is a
useful tool for gravitational wave searches, as it allows a way to incorporate already known
information into analysis. Bayes theorem can be stated as such,

(1) p(H|~d, I) = p(~d|H, I)p(H|I)
p(~d|I)

where ~d represents the observed data, H is a hypothesis, and I is relevant background
information.

Here, p(H|~d, I) is the posterior probability, or the probability of hypothesis H given
the data ~d and background information. p(~d|H, I) is the likelihood function, read as the
likelihood of observing this set of data ~d assuming the hypothesis H to be true. p(H|I)
is the prior probability, or probability that this hypothesis is true before analyzing ~d.
Finally, p(~d|I) is the marginal likelihood over all hypotheses, also known as the evidence.
This factor is the likelihood of the data, regardless of hypothesis.

The evidence is the sum of likelihoods over all hypotheses, where p(~d|I) =
P

i
p(~d|Hi, I)

as long as
P

i
p(H|~d, I) = 1. That is, the set of models Hi must be representative of all the

possible hypotheses. This evidence is often ignored as a normalizing factor, since there is
rarely such an exhaustive set of hypotheses that constitutes all possible conclusions.

Given a set of data, we can calculate the probability density across the parameter space
using the following restatement of Bayes Theorem:

(2) p(~✓|H, ~d, I) =
p(~d|~✓, H, I)p(~✓|H, I)

p(~d|H, I)

where p(~✓|H, ~d, I) is the probability of ~✓, a vector in parameter space. Likelihood values
p(~d|✓, H, I) and prior probability function p(✓|H, I) are relatively easy to determine. In
this case, the evidence p(~d|H, I) is the likelihood marginalized over all values of ✓. This
evidence becomes important when distinguishing between competing models. It is also
this quantity which is most di�cult to calculate, and for which nested sampling provides
a means of estimation.

Application of Equation 2 allows for parameter estimation to be performed, by gaining
knowledge of the distribution of the posterior over each parameter in ~✓. Using the posterior
probabilities from Equation 1, we can distinguish between possible hypotheses by measuring
the odds ratio O:
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O1,2 =
p(H1|~d, I)
p(H2|~d, I)

(3)

O1,2 =
p(H1|I)p(~d|H1, I)

p(H2|I)p(~d|H2, I)
(4)

O1,2 =
p(H1|I)
p(H2|I)

B1,2(5)

where B1,2 is a ratio of likelihoods known as the Bayes factor. When drawing a comparison
between two models, we assume the prior odds p(H1|I) and p(H2|I) to be known. We
calculate the Bayes factor to provide a measurement of which model is favored by the
data.

(6) B1,2 =
p(~d|H1, I)

p(~d|H2, I)

Calculation of the Bayes factor relies on being able to evaluate the following evidence
integral:

(7) Z = p(~d|H, I) =

Z

~✓

p(~✓|H, I)p(~d|H, ~✓, I)d~✓

There are several di�culties with evaluating this integral. First, it can only be evaluated
analytically in the simplest cases, certainly not when there are a large number of correlated
parameters. Second, we use a post-newtonian model for the inspiral of a compact, non-
spinning binary, which has 9 parameters. Integrating over a 9 dimensional parameter space
can be computationally demanding, and most numerical techniques use too much CPU
time for evaluation of this integral to be included in search pipelines. The nested sampling
algorithm provides a novel approach to estimating the evidence integral by sampling from
the likelihood function.

1.2. Nested Sampling Algorithm. The nested sampling algorithm is a tool developed
by John Skilling ([3], [4]) to estimate the evidence integral. On the most basic level, the
algorithm samples from the likelihood function and then sums the area under the likelihood
as such:

(8) evidence = Z =

Z
Ld�

where � represents the fraction of prior mass being evaluated. Before the samples are gen-
erated, the algorithm is given a function of prior probability for each parameter, p(✓|H, I).
Then, a number of live points, NLive, are sprinkled across the parameter space and the
likelihood of each sample p(~d|✓, H, I) is calculated. The sample with lowest likelihood is
then discarded and resampled at a higher likelihood. The steps of each live sample to
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Figure 1. During the nested sampling process, live points are moved to
increasingly higher likelihoods, as the theoretical contour in the parameter
space shrinks. Figure borrowed from [3].

points of higher likelihood are made using Monte Carlo methods. Through this process of
resampling, a set of live samples is created that is concentrated around the area of highest
likelihood in the parameter space.

As seen in Figure 1, each sample can be seen as lying on a contour of equal likelihood.
As the set of live samples are moved into higher likelihoods, the contour is shrinking
towards the point of highest likelihood, and the prior mass contained within the contour
is constantly decreasing. The term ”nested sampling” refers to consistently sampling over
a new domain which is located within the previous domain. As the likelihood increases,
prior mass shrinks by a factor of e1/n, where n is the iteration number. As the number of
live samples NLive is constant, the density of samples in each subsequent area of parameter
space increases with each iteration.

Having sampled from the likelihood function across the parameter space with respect to
the prior distribution, the evidence integral Equation 7 can be approximated by summing
over all the samples, while taking into account the relative contribution of each iteration to
the evidence. Therefore, the evidence for each iteration increases by adding the weighted
likelihoods for each iteration:

(9) Zi =
X

i

Li!i

where the weight factor !i is the di↵erence between the prior masses at subsequent contour
levels,

(10) !i = p(✓i|H, I)d✓

Posterior samples can be created from the set of likelihood samples through the following
relationship:
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(11) pi = Li!i/Z

The algorithm developed by John Skilling [3] has been implemented into a nested sam-
pling code specifically for gravitational wave searches by John Veitch [5]. It is this imple-
mentation of the code that is being utilized and tested in the following sections.

2. Effects of Prior Knowledge

(a) (b)

Figure 2. Plot of distance, in MegaParsecs, over inclination angle, in radians, for a set of
nested samples collected for a software injection. The colors indicate likelihood values, with red
being the highest and orange being the lowest. In plot (a) the inclination angle is sampled over
all values from 0 to ⇡. In plot (b), the inclination angle is limited between ◆ < 0.2⇡ and ◆ > 0.8⇡

The prior probability function, p(✓|H, I), allows one to incorporate prior knowledge into
parameter estimation. Searching for inspiral signals around GRB triggers limits our search
to binary systems whose angular momenta are oriented towards or away from us, placing
the earth in the path of the emitted �-ray jet. We know that the inclination angle, ◆, must
be less than or equal to the GRB opening angle in order for a GRB event to be observed.

Constraining the inclination angle allows for more accurate estimation of source distance,
as there is some degeneracy in the distance and inclination angle parameters. A binary
oriented directly towards earth will have both a + and ⇥ polarization, resulting in a higher
strength signal that will be detectable out to greater distances. A binary whose plane
lies along our line of sight, or an edge-on view, will have only a ⇥ polarization, and the
source must be closer in order to be seen. For a signal with given amplitude and unknown
inclination angle, the distance will correlate with inclination angle, as seen in Figure 2.

To best tailor the nested sampling code for GRB-based searches, an option was added
to constrain the prior probability function of the inclination angle to an arbitrary degree.
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When the code samples in the parameter space, it will only draw from areas described by
the prior.

An application of the nested sampling code’s distance estimation, using the described
limits, can be seen in Figure 3.

The range of jet-emission opening angles of short GRBs is not well-constrained, as these
events are both rarer than their long-duration counterparts and the quickness of these
events means that afterglows have not yet been detected [1]. Lacking a confident estimate,
for all work described below, we limited the inclination angle to vary within the ranges of
(0, 20�) and (160�, 180�)

(a) (b)

(c) (d)

Figure Inclination Angle Standard Deviation
(a) 0 to ⇡ � = 5.3743
(c) 0 to 0.4⇡ � = 5.7575
(d) 0 to 0.2⇡ � = 3.0898
(d) 0 to 0.05⇡ � = 2.4987

Figure 3. Posterior PDF Distributions of source distance (Mpc), with inclination angle
constrained as indicated, run on the same face-on software injection.
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3. Inspiral Search Pipeline

Another aim of this project was to incorporate the nested sampling code into a fully
automated pipeline, for easy application in GRB-triggered searches. A python script which
creates a directed acyclic graph (DAG) defining a sequence of jobs, which constitute the
pipeline, for submission to a computing cluster. Figure 4 illustrates this pipeline.

When using the nested sampling code in the GRB search, we examine a 6 second window
around the GRB time, from 5s before to 1s after. The nested sampling code searches most
e↵ectively and e�ciently when run over durations much shorter than 6 seconds. The ending
time of the inspiral signal has a very high amplitude and short duration. We search for this
end time by dividing the 6 seconds of data into segments of length 0.1s each. Also, division
of the data into smaller segments allows us to take advantage of the ability of computing
clusters to run jobs in parallel, reducing the overall time of the analysis. However, merely
locating the end time does not characterize the entire signal, the duration of which may last
up to 10s prior to endtime. To take this into account, it is necessary to recombine the data
and be able to calculate a detection statistic and estimate parameters that reflect properties
of the entire waveform. Application of Bayes theorem allows for coherent analysis of the
data set as a whole.

3.1. Combining Output.

Finding the Global Bayes Factor. For a general case of 60 segments that we wish to combine
for one result, we need to find the global Bayes Factor, which will be a measurement of the
odds of a signal appearing at any time within the 6 second GRB window.

As seen in Equation 6, the Bayes factor for any one segment i is simply the ratio of
likelihoods between the signal and noise models (respectively, m and n):

(12) Bm,n =
p(di|mi, I)

p(di|ni, I)

where the signal evidence p(di|mi, I) and noise evidence p(di|ni, I) are output by the nested
sampling code. Therefore, Equation 12 is known for each of the 60 segments. From this
knowledge we wish to calculate the global Bayes Factor.

We start by comparing the posterior probabilities of each model. We use the shorthand
Mi to represent the posterior probability p(mi|di, I), the probability that there is a signal
and Gaussian noise present in segment i, and Ni for posterior probability p(ni|di, I), or the
probability that there is only Gaussian noise in segment i. Comparing the probabilities of
signal and noise in all 60 bins, we start with the odds ratio:

(13) Oglobal =
M1 orM2 or...M60

N1 andN2 andN3 ...andN60

The above statement can be read as ”The odds that there is a signal present somewhere
in the data is equal to the probability that there is signal in one segment from a set of 60
over the probability that there is noise in all 60 segments.” While intuitively sound, the
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Figure 4. The structure of the GRB search nested sampling pipeline. Using an input of
trigger time and a number of configuration options, the pipeline first finds the data, then runs
the nested sampling code for a network of detectors (denoted here as three detectors H, L, and
V), and for each detector individually. Additional scripts combine and process the data, as well
as perform a coherency test.

above expression considers each segment independently. When looking at the probability
that a signal is present in segment 1, one must simultaneously look at the probability that
it is absent from all other segments. The expression becomes:

(14) Oglobal =
(M1 andN2 andN3 ...andN60) or (N1 andM2 andN3 ...andN60) or...

N1 andN2 andN3 ...andN60

Here the probability of the signal being present in any segment is multiplied by the
probabilities of the signal not being present in any other segment.

In probability theory, and represents multiplication of probabilities and or represents
addition. Taking this into account, many elements cancel, leaving us with:

(15) Oglobal =
M1

N1
+

M2

N2
+ ...

M60

N60
=
X

i

Mi

Ni

For i 2 (0, 60) Remembering that Mi and Ni represent the posterior probabilities of sig-
nal and noise, respectively, and applying Bayes Theorem (Equation 1), we can make the
statements:
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Mi = p(mi|di, I) =
p(di|mi, I)p(mi|I)

p(di|I)
(16)

Ni = p(ni|di, I) =
p(di|ni, I)p(ni|I)

p(di|I)
(17)

Oglobal =
1

60

X

i

p(mi|I)p(di|mi, I)

p(ni|I)p(di|ni, I)
(18)

The factor 1
60 in Equation 18 accounts for the fact that the prior probability of a signal

being present in the data, p(m|I), should be the same no matter what length of time we
examine, as we expect to see only one signal associated with any GRB. Summing over the
prior means that it accumulates. Accumulation of the prior amounts to the statement that
there is a certain rate of events and, when looking at longer lengths of time, the probability
of finding a signal increases accordingly. When looking around a GRB event, we expect to
see only one signal, and our prior probability does not change whether we look at one time
segment around the event or 60 segments. Therefore, when looking at multiple segments
associated with the same event, we must be sure to take the mean of the signal prior
p(m|I).

Therefore, we still need to divide the Bayes Factor by 60, making the global Bayes Factor
equal to the mean of Bayes factors.

(19) Bglobal =
1

60

X

i

p(di|mi, I)

p(di|ni, I)
= hBii

Using this global Bayes Factor, we are able to make a definitive statement as to whether
or not there is a detectable signal within the 6 second GRB triggered window. While
technically Bayes Factors above 0 indicate favorable odds for existence of a signal, due to
noise we set a non-zero detection threshold based on the loudness (that is, magnitude of
Bayes factors) of the background.

Weighted Likelihoods. In addition to determining the total Bayes factor, the samples from
each segment must be combined in order to perform parameter estimation for the entire
data set. In order to combine the samples, the likelihood of each sample must be weighted
appropriately for consistency across all 60 segments.

The nested sampling code outputs the likelihood for each sample, p(di|~✓i,mi, I) before
being marginalized, where ~✓ is a vector containing specific value in the parameter space.
As explained above, the likelihood of the signal being in any one segment is the likelihood
of a signal being present in that segment and absent in all other segments. Therefore, the
likelihood L that the signal appears in just one segment is:

(20) Li = p(di|~✓i,mi, I) ⇤
Y

j 6=i

p(dj |nj , I)
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In this case, the likelihoods of data points in a segment are weighted by multiplying them
by the noise evidence for all other segments. This should make all samples comparable,
necessary to create a set of global posterior samples.

Posterior Samples. In the case of an above-threshold Bayes factor, we wish to estimate
the parameter values of the signal. In order to do this, we want to observe the distribution
of the posterior probability function, specifically which values are occupied by the highest
probabilities. Samples from the posterior can be produced from the output of the nested
sampling code, which provides parameter values ✓i and the likelihood Li for each sampled
point for each of the 60 segments. Equation 11 provides the relationship through which
posterior probabilities can be calculated from each sample, using the likelihood, evidence
and weighting factor !i, which accounts for the fact that the nested sampling algorithm
samples over a constantly decreasing fraction of prior mass.

However, as we simply wish to observe the distribution of posterior probability across
the parameter space, direct calculation of the posterior is not necessary. After applying
the above procedure for weighting the likelihoods of each sample, we wish to compile a set
of samples representative of the posterior probability density function (PDF). We do this
by rejection sampling from all 60 sets of nested samples to create a single set of posterior
samples, keeping or discarding them proportional to their density.

In the end, we wish to have a density of samples proportional to the posterior probability
function:

(21) DP (~✓i) / p(~✓i|di)

We are able to make a statement about DN , the density of nested sampling points, which
we must manipulate to find DP .

The prior volume � = V olume inside likelihood contour

V olume of Prior
is 1 before the first iteration. As

x ! 1, the contour, indicating highest likelihood values, shrinks, and therefore the prior
volume becomes more constrained.

Given a number Nlive of points, ⇠ (the proportion of the prior with likelihood greater
than a given L) shrinks with each iteration by a factor of e1/Nlive , where Nlive is the number
of live points. Although the area under the likelihood curve is shrinking, sampling continues
at the same rate. Therefore, the density of samples after each iteration is proportional to
ex/Nlive and the prior probability.

(22) DN (~✓i) / p(~✓i)e
x/Nlive

In order to find a density proportional to likelihood, we must weight each sample ac-
cording to its iteration number x. At this stage, samples are still kept separate in their
own time bins, because the iteration number x is then simply the order of points.

Remembering Bayes Theorem, Equation 1, and knowing that the evidence p(di|I) can
be ignored as a normalizing constant, we set the probability density equal to the likelihood
times the prior:
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(23) DP (✓i) = p(di|✓i)p(✓i)
Substituting from Equation 22, we can say:

(24) DP (✓i) =
DN (✓i)

ex/Nlive
⇤ p(di|✓i)

Therefore, the density weight Di for every sample ✓i can be expressed as

(25) Di = Li ⇤ e�x/Nlive

To resample from the posterior PDF, the code generates a random number u 2 (0, 1) for
each sample. If u < Di

Dmax
, where Dmax is the highest density weight, the sample is added

to the posterior sample set. If not, it is discarded. This simple algorithm chooses points
randomly, but favors those with higher likelihood, weighted by density so as not to over
favor points from higher iterations.

3.2. Results.

Background Estimation. We ran the code on 20 o↵-source windows around open-box
GRB090709B to estimate which value of the Bayes Factor should be considered as a de-
tection threshold. In the case of this event, we define the detection threshold as the point
above which only 5% of the distribution lies, which should give a 5% false alarm rate when
searching for real signals. Based on only 20 o↵-source times, we estimate the detection
threshold to be Bthresh ⇡ 4 for this particular GRB event. For the distribution of o↵-
source Bayes factors for this particular event, see Figure 3.2 on Page 18. Bthresh can be
adjusted according to desired false alarm probability.

Injection. The nested sampling code has been tested on a number of injections, both soft-
ware and hardware. We used a 9-dimensional model in all investigations, with the parame-
ters chirp mass, symmetric mass ratio ⌘, right ascension, declination, time, distance, phase
�, polarization angle  , and inclination angle ◆. For most injections, the sky location was
fixed, so the code was searching over a 7 dimensional space. For the parameter estimation
on one found injection, see Figure 6 on 19. The distribution of the Bayes factor over time
for this particular injection can be seen in Figure 7 on Page 20.

Pipeline E�ciency. Runs done on 3000 injections with a variety of SNRs demonstrate the
pipeline’s e�ciency at recovering signals. For the plot of this e�ciency over SNR, see
Figure 8 on Page 20. Thresholds were based on the single highest Bayes Factor when
running over 3000 o↵-source times, prior to making injections. Choosing a threshold based
the single loudest o↵-source time rather than using the 5% threshold gives a 1

3000 false alarm
probability, rather than 1

20 . Using this loudest background event as the distinguisher, the
pipeline does not perform well at recovering sources until a coherency test, described in
Section 4, is included. The coherency test drastically reduces the background, allowing us
to detect more sources confidently.
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Although Bayes factor is not linearly related to SNR, there is some correlation. For the
distribution of the Bayes factors vs. SNR for all injections, recovered and non-recovered,
see Figure 9 on Page 21.

4. Coherency Test

Using a network of detectors is beneficial to analysts in more than one way. Besides
allowing for better parameter estimation, having multiple detectors allows for coherency
tests. By cross-checking the data collected by separate detectors, it is possible to determine
if an observation is consistent. A gravitational wave signal would appear in all detectors
with physically consistent parameters. Instrumental glitches would perhaps resemble a
detection, but would be unique for each detector.

Here we implement a Bayesian coherency test, introduced by [5], which relies on the
Bayes Factor as a means to distinguish between coherent and incoherent models. The
incoherent model, Minc, is a model which has di↵erent values for a parameter x on each
detector, x1 6= x2. The coherent model, Mcoh, represents the special case for which identical
parameters are identified on each detector, x = x1 = x2.

Minc =
1

2⇡�1�2
exp

✓
�1

2


(d1 � x1)2

�21
+

(d2 � x2)2

�22

�◆
(26)

Mcoh =
1

2⇡�1�2
exp

✓
�1

2


(d1 � x)2

�21
+

(d2 � x)2

�22

�◆
(27)

In this case, each model is demonstrated for two detectors, noted as 1 and 2, although in
practice this statement can be expanded to include an arbitrary number of detectors. x
represents a single parameter. Again, although this is demonstrated for one parameter, x,
Equation 27 can be expanded to include the 9-dimensional parameter model used in this
paper.

To gain the evidence for each model, we integrate the likelihood function over the pa-
rameter space:

Zinc =

Z

x1

Z

x2

exp

✓
�1

2


(d1 � x1)2

�21
+

(d2 � x2)2

�22

�◆
dx2dx1(28)

Zcoh =

Z

x

exp

✓
�1

2


(d1 � x)2

�21
+

(d2 � x)2

�22

�◆
dx =

Z

x

exp

 
�1

2

X

i

(di � x)2

�2
i

!
dx(29)

for i 2 (1, 2) detectors.
For the incoherent signal, Equation 28, each detector can be integrated separately, resulting
in the incoherent evidence being equal to the product of the evidence on each individual
detector.
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Zinc =

Z

x1

exp

✓
�1

2


(d1 � x1)2

�21

�◆
dx1

Z

x2

exp

✓
�1

2


(d2 � x2)2

�22

�◆
dx2(30)

Zinc =
Y

i

Z

xi

exp

✓
�1

2


(di � xi)2

�2
i

�◆
dxi

Zinc =
Y

i

Zi(31)

for i 2 (1, 2) detectors. For the LIGO Hanford, LIGO Livingston and Virgo detector
network, we use Zinc = ZH ⇤ ZL ⇤ ZV .

Using these coherent and incoherent evidences, we can calculate a Bayes Factor to dis-
tinguish between the two. When comparing Zcoh to Zinc, Zcoh should dominate if the signal
has similar parameters x1 ⇡ x2. Zinc should only dominate if x1 6= x2, as the evidence for
the coherent model will be comparatively low.

We find that there are a variety of tests that can be performed on our data, using the
incoherent and coherent signal evidences, as well as the noise evidence. Remember that
the Bayes Factor before coherency test is simply the coherent signal evidence over the noise
evidence, as in Equation 6. We can expand on that comparison in several ways.

For the following, we calculate the odds of a signal appearing in any of n bins, using the
following shorthand to represent posterior probabilities:

C= coherent signal model, p(M |d, I)
N= noise model, p(N |d, I)
I= incoherent signal model, p(MH |dH , I) ⇤ p(ML|dL, I) ⇤ p(MV |dV , I)

4.1. Test 1: Coherency Mean. The first test, called the Coherence-mean test, compares
the probability of a coherent signal in one bin and incoherent signal in the other bins to
the probability that there is incoherent signal in all bins.

(32) Ocoh =
(C1 and I2 and I3 and...In) or (I1 andC2 and I3 and...In) or ...

I1 and I2 and I3 and...In

Understanding that and stands for the mathematical operator ⇤ and or represents the
operator +, we can cancel out most terms from the above statement, so that the odds ratio
is simply a sum

(33) Ocoh =
X

i

Ci

Ii

Using the same process used to derive the global Bayes Factor above, Equation 19, we see
that the coherent Bayes Factor is equal to the mean over all time segments:

(34) Bcoh = hZcoh

Zinc

i
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4.2. Test 2: Coherency-Noise Mean. Another test that can be applied is the Coherent-
Noise-mean. We compare the probability of a coherent signal in one bin and incoherent
signal or noise in the other bins to the probability that there is incoherent signal or noise
in all bins.
(35)

Ocoh =
(C1 and [I2 or N2] ...and IN or NN ]) or ([I1 or N1] andC2 and [I3 or N3] ...and [IN or NN ]) or ...

[I1 or N1] and [I2 or N2] and [I3 or N3] ...and [IN or NN ]

Same as Equation 33, we cancel out most terms:

Ocoh =
X

i

Ci

Ii +Ni

(36)

Bcoh = h Zcoh

Zinc + Znoise

i(37)

The coherency tests tend to bring down the detection threshold. Based on a run
over 3000 o↵-source segments, the threshold Bayes Factor before coherency tests was Log
Bthresh = 2.5. Using the coherency-mean, Log Bthresh = 1.4, which decreases even more
using the coherency-noise-mean, to Log Bthresh = 1.0. See Figure 10.

The coherency test thus far proves e↵ective at glitch rejection. The 3000 second window
used for the 3000 injections (1 injection per second) included a very loud glitch at second
1626. As seen in Figure 12 on Page 23, this glitch appears before the coherency test is
applied, but is strongly rejected by both tests.

As may be obvious from Figure 11 on Page 22, the coherency-mean and coherency-noise-
mean tests provide very similar results, with the added noise evidence serving to further
downweight the Bayes Factor at certain points, although without a↵ecting the higher value
found at the injection time. While we continue to put both tests to use, results suggest
that a single test is su�cient for glitch rejection as both seem to perform equally well.

The use of a coherency test increases our confidence in picking out signals over back-
ground noise. Glitches are strongly rejected so that the loudest background events are
noticeably smaller Bayes factors. Figure 8 clearly shows how coherency tests drastically
improve e�ciency when aiming for a low false alarm probability. By pinpointing and reject-
ing glitchy times, we stand a greater chance of making a true gravitational wave detection.
The more rigorously we can target these glitches, the greater our range increases, allowing
our analysis to be more confident at detecting sources at greater distances, as weaker signal
will be more likely to stand out above a lower threshold Bayes factor.
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5. Future Directions

While the pipeline proves to be useful at recovering injections and matching their param-
eters, future direction includes more rigorous testing of the pipeline’s consistency at making
detections and excluding glitches, before it can reasonably be brought up for review. This
includes comparing its performance with that of already existing pipelines. Also, we intend
to analyze GRBs which have already or are in the process of being examined using other
techniques, for further comparisons. Finally, alternative methods of glitch rejection will be
contrasted with the Bayesian coherency test.

6. Concluding Remarks

Throughout the course of this summer research project, sponsored by the NSF Gravi-
tational Wave REU Grant, significant progress was made on utilizing the nested sampling
algorithm in a GRB-triggered inspiral search pipeline. Investigations made into the rela-
tionship between prior knowledge and parameter estimation shows that the tighter range
we are able to isolate for short GRB opening angles, the more precisely distance can be
measured. After taking into account the limitations of the nested sampling code, in amount
of data which can be handled e�ciently, we devised a method of combining multiple seg-
ments of data into one complete analysis in a way that is consistent with Bayesian inference.
In this way, we can search across longer lengths of data without sacrificing large amounts
of time to the analysis. Based on our investigations, the pipeline performs well at both
finding injections and their parameters.
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(a) Global Bayes Factors (b) All Bayes Factors

Figure 5. The distribution of Bayes Factors for 20 o↵ source segments. Figure (a) shows
the distribution of the 20 global Bayes Factors. Figure (b) shows the distribution of all 1200 raw
Bayes Factors, calculated before the data was combined. Here the detection threshold is marked
at Bthresh = 3.90. In Figure (a), the threshold is higher, between 4 and 4.5, because taking the
mean favors high-valued outliers.
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Figure 6. Posterior PDFs for face-on (◆ = 0) software injection, with SNR 7.42 and global
Bayes Factor 15.90. RA and dec are not shown, as sky location was held fixed. y-axis is probability

density.
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Figure 7. Log of the Bayes Factor over time for the software injection shown in Figure 6.
There is a clear spike, high above the detection threshold, at t=0, where the injection is made.
Global Bayes factor averages to be 15.90.

Figure 8. Detection e�ciency plotted over SNR, for 3000 injections. Detections were calcu-
lated as percentage of injections recovered with Log(Bayes factor) greater than the threshold value,
set as the loudest factor found over all 3000 times prior to making injections. The red line is the ef-
ficiency before a coherency test is performed, using threshold Bayes Factor LogBthresh = 170.51,
the green line is using the coherency-mean test and LogBthresh = 5.13, and the blue line is with
the coherency-noise mean and LogBthresh = 4.56.
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Figure 9. Log of the Bayes Factor plotted over SNR. Red points represent the Bayes Factors
before any coherency test is applied. Blue points represent the Bayes Factors after the coherency-
noise test. The coherency-mean test gives visibly the same output, and was excluded from
this graph. There was one outlying point left out for better visualization, at (SNR, Log(B))=
(7.12,�852.5), which happens to coincide with the strongest glitch, at second 1626.

Figure 10. Background Estimation using Coherency Tests. Red bars are the bayes factors
before a coherency test is performed, green bars are the bayes factors from the coherency-mean
test, and the blue bars are from the coherency-noise mean.
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Figure 11. Log of the Bayes Factor plotted over time for four di↵erence software injections.
The blue dashed line is the Bayes Factor before coherency tests are applied. The red line is after
the coherency mean has been applied, and the black line after the coherency-noise mean. The six
second window is centered around the injection time at t = 0.
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(a) (b)

(c)

Figure 12. Bayes Factor plotted over 3000 o↵-source segments, of length 0.1 seconds each.
The red dots mark the Bayes Factor before coherency test is applied, blue dots are the Bayes
Factor from coherency-mean test, and the green line is from the coherency-noise mean. (a) shows
the Bayes Factors for the entire 3000 second window. (b) shows a glitch rejection made around
time 1630 and (c) shows a rejection around time 2330.


