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1 Motivation

The goal of the VIRGO Interferometer in Cascina, Italy is direct detection of
gravitational radiation predicted by general relativity. Due to their character-
istically weak interactions, observing gravitational waves requires an incredible
level of instrumental sensitivity, and a relatively long period of integration. In
this spirit, the apparatus has a design sensitivity of 3⇥10�21Hz� 1

2 at 10Hz. As
an instrument becomes increasingly sensitive, however, the collected data be-
comes more susceptible to meaningless noise signals that increase the necessary
integration time or compromise the experiment altogether. It is imperative,
then, that sources of error are fully understood and accounted for in analysis.

In an e↵ort to identify noise, a number of detectors and probes have been
integrated into the apparatus’s control system. These give valuable measures of
seismic activity, mechanical vibrations, thermal fluctuations, electrical, acoustic,
and beam frequency noise, among others, at di↵erent locations across the entire
experiment. Ideally, this data could identify the e↵ects of noise in the main
signal (the dark fringe). To do so, it is necessary to understand the coupling of
channels to one another.

In many cases, certain channels might be linearly coupled to the dark fringe.
This scenario is relatively simple to identify and understand. However, in more
complicated cases we might observe nonlinear coupling that evades conventional
techniques for analysis. These nonlinearities are the primary focus of our work;
our intent being not only to identify them, but also to quantify them in as
meaningful a manner as possible. It is expected that as sensitivity of the in-
strument increases, the vulnerability to nonlinear e↵ects will increase. Physical
sources of nonlinear signal components might be processes such as modulations,
up conversions, or down conversions. The ultimate hope of this research is to
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improve the understanding of how noise will manifest itself in the main signal
and provide a foundation for increased resolution of the VIRGO experiment.

The interferometer is undergoing its second science run in the summer of 2009,
called the VIRGO Science Run 2 (VSR2). This run will provide a great deal
of data from both the main channel of interest, the dark fringe, as well as from
auxiliary channels that are important for implementing the control system, and
running data analysis.

In our analysis, we assume the existence of a fundamental set of independent,
stochastic components from which all collected data can be constructed. For
simplicity, it is often assumed that these components are Gaussian and zero-
mean. This article assumes a cursory knowledge of probability and statistics.
For a thorough address on these topics, the reader is referred to [1].

2 Defining Signal Nonlinearity

As of yet the use of the word “nonlinearity” has been ambiguous. Let us
suppose, in accordance with the assumptions of our research, that all signals
recorded in the VIRGO experiment can be expressed in terms of N fundamental
(linear stochastic) components {pi : 1  i  N}. Then, in this article, a signal,
s, is deemed linear if it can be written as:

s =
NX

i=1

kipi (1)

, where {ki : 1  i  N} is a set of scalars. Succinctly, a linear signal is
defined as any signal that is a linear combination of a fundamental set of signal
components. Generally, this kind of signal corresponds to relatively simple
physical situations, and in practice we do not expect to see perfect linearity
very often. There are infinitely many ways for a signal to be nonlinear, which
we represent (maintaining reasonable generality) with the notation:

s =
NX

i=1

bgi(p1, ... , pN ) (2)

, where {bgi : 1  i  N} is a set of operators with at least one nonlinear map-
ping. In general, bgi can be arbitrarily complicated. One practical simplification
might be the model:

s =
NX

i=1

hipi(
NX

k=1

li,kpk) (3)

, where {hi : 1  i  N} is a set of arbitrary scalar values and {li,k : 1  i 
N, 1  k  N} is a set of scalar values that can be determined by a function.
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For our purposes, the model in (3) is acceptable, and we do not pursue the more
general cases that are allowed for in (2). This constriction still leaves a great
deal of relevant physical processes available, and, importantly, it a↵ords us a
method for resolving and quantifying nonlinearity. Note that if we let:

li,k(t) =
⇢

pk(t)�1 , if k = a

0 , otherwise (4)

for any 1  a  N , we can recover a non-trivial linear model. (We do not worry
about indeterminate forms since the probabilty that pk(t) = 0 is zero). To the
same end, we might let:

li,k(t) =
1

Npk(t)
(5)

. That this model (3) can be analytically reduced to a simple case (1) suggests
that it might share certain behaviors with the linear model. In practice, we
expect to find that many signals correspond to a model with:

li,k =
⇢

� , if k = ai

0 , otherwise (6)

, for some 1  ai  N , where � is a scalar value. Note that we expect no
time dependence for li,k; a condition necessary for our analysis. Without time-
independence of li,k the issue of quantifying nonlinearity becomes increasingly
complicated, and we do not propose a technique for doing so in this article.

3 Second-Order Statistical Analysis

3.1 Second-Order Testing

Second-order analysis is a staple of signal analysis. Every power spectrum,
in fact, is a product of second-order analysis. For now, we will restrict our
analysis to the time domain. In truth, any linear second-order correlation cannot
determine nonlinear e↵ects, and so we examine a direct generalization of second-
order testing. There are several tests which are direct generalizations of second-
order tests that we can perform to identify nonlinearity in a signal set. Let us
define two signals in the following manner:

x ⌘ a + b (7)

y ⌘ ↵ac + c (8)

, where a, b, and c are independent, stochastic, Gaussian signals each with zero
mean, and ↵ is a nonzero constant. In practice, we cannot record continuous
measures with our instruments, and so we are forced to approximate the scenario
with a discrete sampling of the signals:

xn ⌘ an + bn (9)
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yn ⌘ ↵ancn + cn (10)

, where the subscripts are intended to denote a finite set of data. This signal set
could be interpreted as a scenario in which a component of x, a, is modulated
by the process c, where both b and c could be noise unique to their respective
channels. We expect this process to have a non-Gaussian nature. If we evaluate
the expectation value of xny

2
n we find:

E[xny
2
n] = E[anc

2
n + 2↵a

2
nc

2
n + ↵

2
a
3
nc

2
n + bnc

2
n + 2↵bnc

2
n + ↵

2
a
2
nbnc

2
n] (11)

. Since the processes a, b, and c are Gaussian, we can ignore the first, third,
fourth, and sixth terms, giving:

E[xny
2
n] = E[2↵a

2
nc

2
n + 2↵anbnc

2
n]

= 2↵(E[a2
nc

2
n] + E[anbnc

2
n])

= 2↵E[a2
n]E[c2

n] (12)

, which is guaranteed to be nonzero. In practice, we can approximate the
expectation value by taking a mean, and so:

xny2
n ⇡ 2↵ā2

nc̄2
n (13)

. For simplicity let

xny2
n ⌘ M1 (14)

a2
n ⌘ A (15)

c2
n ⌘ C (16)

. Rearranging (12) to get an explicit expression for ↵ we have:

↵ ⇡ M1

2AC
(17)

. It is worth noting that M1 can be directly measured from the data signals,
whereas A and C must be estimated. The resulting estimated value of ↵ is then
a crude measure of the nonlinearity in our signal set. Though it will not always
be the case, it is reasonable to assume that we have some knowledge of the
processes a and c. This assumption allows us to extract some physical meaning
from the value of ↵.
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Of course, we can define another second-order test of nonlinearity. Let us use
the same signal set xn and yn, and this time we evaluate:

E[x2
ny

2
n]� E[x2

n]E[y2
n]

. It is easiest to perform this calculation in parts:

E[x2
ny

2
n] = E[a2

nc
2
n + 2anbnc

2
n + b

2
nc

2
n + 2↵a

3
nc

2
n + 4↵a

2
nbnc

2
n

+2↵anb
2
nc

2
n + ↵

2
a
4
nc

2
n + 2↵

2
a
3
nbnc

2
n + ↵

2
a
2
nb

2
nc

2
n] (18)

, which (thankfully) can be simplified to:

E[x2
ny

2
n] = E[a2

nc
2
n + b

2
nc

2
n + ↵

2
a
4
nc

2
n + ↵

2
a
2
nb

2
nc

2
n]

= E[a2
n]E[c2

n] + E[b2
n]E[c2

n] + 3↵
2
E[a2

n]2E[c2
n] + ↵

2
E[a2

n]E[b2
n]E[c2

n] (19)

. We then evaluate:

E[x2
n]E[y2

n] = E[a2
n + 2anbn + b

2
n]E[↵2

a
2
nc

2
n + 2↵anc

2
n + c

2
n]

= E[a2
n + b

2
n]E[↵2

a
2
nc

2
n + c

2
n]

= ↵
2
E[a2

n]2E[c2
n] + ↵

2
E[a2

n]E[b2
n]E[c2

n] + E[a2
n]E[c2

n] + E[b2
n]E[c2

n] (20)

. We then combine the two together to find:

E[x2
ny

2
n]� E[x2

n]E[y2
n] = 2↵

2
E[a2

n]2E[c2
n] (21)

. Again, we can approximate expectation values with means:

x2
ny2

n � x̄2
nȳ2

n ⇡ 2↵
2
ā2

n
2
c̄2
n (22)

. For simplicity, we introduce the notation:

x2
ny2

n ⌘ M2 (23)

x̄2
nȳ2

n ⌘ M3 (24)

, which allows us to solve (21) for ↵
2:

↵
2 ⇡ M2 �M3

2A2C
(25)

. This yields an interesting result if we note that dividing (25) by (17) gives ↵:

↵ ⇡ M2 �M3

2A2C
⇤ 2AC

M1
=

M2 �M3

AM1
(26)

. This tells us that in order to extract ↵ only one parameter, A (which the reader
will recognize as the variance of an), needs to be specified; all other information
is contained within the discrete channels xn and yn. This information could be
used in future work in quantification.
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3.2 Limits of Second-Order Analysis

To illustrate the shortcoming of second-order tests, let us define a new discrete
channel of a signal z as:

zn ⌘ (↵an + �bn)cn + cn (27)

, where � is a nonzero constant. Note that it is no longer meaningful to charac-
terize the nonlinearity with a single parameter. This model might correspond
to a modulation of an x signal that has been filtered in some fashion. That is,
we could also write:

zn = x
f
ncn + cn (28)

, where x
f
n is some form of xn that has passed through a filter. Here we use filter

in the most general sense (for instance some mechanical process that amplifies
or attenuates certain components of x), as most man-made filtering techniques
would not produce x

f
n as we have defined it. Nevertheless, this is a completely

plausible physical model worth consideration. If we were to run the same tests
for xn and zn we would find:

E[xnz
2
n] = E[anc

2
n + 2↵a

2
nc

2
n + 2↵anbnc

2
n + ↵

2
a
3
nc

2
n + ↵

2
a
2
nbnc

2
n + 2�anbnc

2
n

+2�b
2
nc

2
n + 2↵�a

2
nbnc

2
n + 2↵�anb

2
nc

2
n + �

2
anb

2
nc

2
n + �

2
b
3
nc

2
n] (29)

, which becomes:

E[xnz
2
n] = 2↵E[a2

n]E[c2
n] + 2�E[b2

n]E[c2
n] (30)

. One will note the similarity between (30) and (12). Introducing the mean
value approximation we have:

xnz2
n ⇡ 2↵ā2

nc̄2
n + 2�b̄2

nc̄2
n (31)

, and adopting the notation:

xnz2
n ⌘ M̃1 (32)

b2
n ⌘ B (33)

gives:

M̃1 ⇡ 2↵AC + 2�BC (34)

. Note that this now requires an estimate of three parameters A, B, and C. We
then wish to solve for:

E[x2
nz

2
n]� E[x2

n]E[z2
n]

. It serves little good to include the great deal of algebra involved in solving for
this, therefore we omit the steps and state that:
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E[x2
nz

2
n]�E[x2

n]E[z2
n] = 2↵2

E[a2
n]2E[c2

n]+2�
2
E[b2

n]2E[c2
n]+4↵�E[a2

n]E[b2
n]E[c2

n]
(35)

. With the mean approximation and new notation:

x2
nz2

n ⌘ M̃2 (36)
x̄2

nz̄2
n ⌘ M̃3 (37)

, this becomes:

M̃2 � M̃3 ⇡ 2↵
2
A

2
C + 2�

2
B

2
C + 4↵�ABC (38)

. We cannot combine (34) and (38) to solve for ↵ or � in such a way as to
eliminate any of the unknown parameters. In order to extract any reasonable
estimate of ↵ (or �), we would need knowledge of A, B, C, and � (or ↵). This
might suggest that we need another test to provide any missing information,
but note that the only second order test left would be:

E[x2
nzn]

, which for our given signal set evaluates to:

E[x2
nzn] = E[a2

ncn + 2anbncn + b
2
ncn + ↵a

3
ncn + 2↵a

2
nbncn + ↵anb

2
ncn

+�a
2
nbncn + 2�anb

2
ncn + �b

3
ncn]

= 0 (39)
. And so this last statistic will not provide any meaningful information about
our signals. We can see that as the complexity of the nonlinearities increases,
it becomes increasingly di�cult to design worthwhile second-order tests.

Another important pitfall of the second-order analysis previously outlined is
that it is only valid for Gaussian fundamental components. While it is cer-
tainly the case that many physical processes exhibit Gaussian nature, it is not
necessarily the case that all components of the VIRGO data act in accordance
with a normal distribution. In this sense, second-order statistical analysis is
incomplete.

4 Higher-Order Statistical Analysis

4.1 Extending to Higher-Order Statistics

There are many ways to introduce higher-order statistical analysis, all of
which have unique advantages and disadvantages. Seeing as this article is not
intended to be a reference on statistical analysis, our approach is to give reason-
able (often qualitative) arguments for how the need for higher-order statistics
might arise. For a thorough treatment of cumulants and higher-order statistics,
the reader is referred to [1], [2], and [3].
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Let {hm} be a set of n random scalar values which define a plotted distribution
H. Note that this distribution allows for no knowledge of any possible temporal
structures, but often this is not critical. We can obtain some useful information
about the nature of H with the first and second order statistics we have already
worked with. For example, we can define a mean of H, which we denote H̄, by
evaluating:

H̄ ⌘ 1
n

nX

m=1

hm (40)

. Qualitatively, this corresponds to an e↵ective central point for the distribution.
(We say that this is “e↵ective” because H might be constructed in such a way
as to make a central point essentially meaningless). It is often convenient to
subtract this mean from all values in the set {hm}:

h
0
m = hm � H̄ (41)

, and we now call H
0 the distribution defined by the set {h0

m}. It is easy to
show that the mean of H

0 is:

H̄0 =
1
n

nX

m=1

h
0
m

=
1
n

nX

m=1

(hm � H̄)

=
1
n

(
nX

m=1

hm �
nX

m=1

H̄)

=
1
n

nX

m=1

hm � 1
n

nX

m=1

H̄

= H̄ � H̄

= 0 (42)

. We might wish to say that H
0 is centered about zero. Often, however, we are

less concerned with a central point, and more concerned with the shape of H
0.

For instance, we might want a measure of the relative spread of H
0 about its

mean. A natural measure might be the variance of H
0:

�
2(H0) ⌘ 1

n

nX

m=1

(h0
m � H̄0)2

=
1
n

nX

m=1

(h0
m)2 (43)
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. Now suppose that we would like a measure of the degree to which H
0 is

asymmetric, or unevenly dense, about its mean. A reasonable statistic might
be something such as:

µ
3(H0) =

1
n

nX

m=1

(h0
m � H̄0)3

=
1
n

nX

m=1

(h0
m)3 (44)

, though if we wish to compare this measure to that of other distributions, it is
helpful to account for the variance of H

0, so we can revise our statistic:

S(H0) =
1
n

nX

m=1

✓
h

0
m

�

◆3

(45)

, which can be written as:

S =
µ

3

�3
(46)

. Formally, we call S the skewness of H
0. Note that S is easiest to interpret

for distributions of zero mean. In general, distributions tend to be most dense
near the mean and gradually tail o↵ in either direction; often a marker of non-
deterministic processes. Assuming H

0 follows this trend, it might be physically
meaningful to examine the weight of the tail in relation to the denser region
about the mean. The proper statistic would not favor either extreme and would
give great weight to large values while diminishing the impact of smaller ones.
A natural suggestion might be:

µ
4(H0) =

1
n

nX

m=1

(h0
m � H̄0)4

=
1
n

nX

m=1

(h0
m)4 (47)

, which, as with the skewness, we should standardize for given variance:

K
0(H0) =

1
n

nX

m=1

✓
h

0
m

�

◆4

(48)

, which we simply write as:

K
0 =

µ
4

�4
(49)

. One will notice that for a normal distribution µ
4 = 3�

4, and so K
0 evaluates

to:
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K
0 =

3�
4

�4
= 3 (50)

, and so we use the convention:

K =
µ

4

�4
� 3 (51)

. We call the statistic K the kurtosis of H
0. Not only does K give information

about the weight of the tail of H
0, but it also serves as a de facto measure

of peakedness about the mean. Generally, a higher kurtosis corresponds to a
greater peakedness.

Statistics beyond fourth-order have less concrete physical interpretations and
are not introduced in this article. Furthermore, higher order statistics become
increasingly di�cult to accurately estimate from data. That is not to say that
there is no potential utility in even higher order statistics, but this pursuit is
beyond the scope of this work.

4.2 Frequency Domain

In a physical system, it is often convenient to think of signal behavior as the
sum of independent frequency components. This approach is intuitively cohe-
sive with our assertion of fundamental signal components. The extension to the
frequency domain, as enacted through the application of Fourier’s Theorem, is
pivotal to our search for nonlinearity. In order to properly explain our partic-
ular use of the frequency domain, it is necessary to introduce several statistics
and statistical concepts outlined in the remainder of this subsection. For this
subsection we have adopted notation similar to that of [2].

Cumulants are a generalized statistic from which many useful measures (such
as those defined in the previous subsection) can be constructed. As it is not
necessary for one to have a strong intuition for cumulants in our work, discussion
on cumulants is limited in this article to articulation rather than analysis. The
second-order cumulant of two discrete temporal processes, x and y, is defined
as:

Cxy(h) = E[x⇤(n)y(n + h)] (52)

, where the asterisk is meant to denote the complex conjugate. We define the
cross-power spectrum of the two processes x and y as:

�xy(!) =
1X

h=�1
Cx,y(h)e�2⇡i!h (53)

, which we often write as:
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�xy(!) = E[X⇤(!)Y (!)] (54)

, where X and Y are the Fourier transforms of x and y respectively. The idea of a
spectrum allows us to extract a kind of energy distribution, and proves useful in
identifying correlations when generalized to higher orders. Introducing another
discrete temporal process z, we can extend (52) to a third-order cumulant:

Cxyz(h, j) = E[x⇤(n)y(n + h)z(n + j)] (55)

, and define a cross-bispectrum of the processes x, y, and z as:

�xyz(!1, !2) =
1X

j=�1

1X

h=�1
Cxyz(h, j)e�2⇡i!1h

e
�2⇡i!2j (56)

, which is written short-form as:

�xyz(!1, !2) = E[X⇤(!1 + !2)Y (!1)Z(!2)] (57)

, where Z is the Fourier transform of z. An analysis of such extensions from
higher order cumulants as in (54) and (57) is the subject of a field called Higher-
Order Spectral Analysis (HOSA).

5 Independent Component Analysis

5.1 Principle of ICA

Blind source separation (BSS) is a term for any technique that aims to filter
out source signals from a mixture with very little knowledge of the mixing pro-
cess or the source signals themselves. Independent component analysis (ICA)
is an approach to BSS in cases where the source signals are expected to be
non-Gaussian and there are as many source mixtures as there are sources. In
accordance with the Central Limit Theorem (CLT), mixtures of the source sig-
nals are better approximations of Gaussian signals than the sources themselves
([1] and [4]). In general, ICA techniques take advantage of this property (or an
expansion of this property) to split mixtures into components.

ICA operates on two assumptions: the source signals are statistically inde-
pendent (necessary condition for the CLT), and the mixing process is linear.
For an in-depth explanation for these conditions the reader is referred to [4]. In
5.1.1 and 5.1.2 we proceed to define the two conditions.

5.1.1 Statistical Independence

Let us define two signals s1 and s2, then, in broad terms, we would say that
s1 and s2 are statistically independent if, for any time t, the value s1(t) provided
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no information about the value s2(t), and vice versa. Mathematically, this can
be expressed as:

8p, q E[sp
1s

q
2] = E[sp

1]E[sq
2] (58)

. Often it is enough that s1 and s2 are uncorrelated (when p = q = 1).

5.1.2 Linear Mixing

Let us define a signal mixture mk of a set of N fundamental components
{si : 1  i  N}, then mk is said to be a linear mixture if:

mk =
NX

i=1

�k,isi (59)

, for some set of scalars {�k,i : 1  i  N}. As each fundamental component
is approximated as a time series, it makes sense to write si as a row vector
~si, where each consecutive column corresponds to a consecutive measurement.
Likewise, we represent the mixture mk as a vector ~mk in a similar fashion, so
that we can now write:

~mk =
NX

i=1

�k,i~si (60)

. In practice, we need as many signal mixtures as there are fundamental com-
ponents, and thus we must concern ourselves with the set { ~mk : 1  k 
N , ~mi 6= ~mj if i 6= j}. Therefore, it is convenient to define the three matrices
M, �, and S such that:

Mij ⌘ ~mij (61)

�ij ⌘ �i,j (62)

Sij ⌘ ~sij (63)

. With this new notation, (59) can be expanded as:

M = �S (64)

, where we call � the mixing matrix. For our purposes, we need only to consider
the case when � is a square matrix. Equation (64) is representative of the
general environment in which BSS is intended to work.
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5.2 ICA and Other BSS Methods

The intent of BSS, as previously stated, is to recover source signals from a set
of mixtures. From a theoretical standpoint, we can do this by defining a new
matrix ��1 such that:

��1� = I (65)

, where I is the identity matrix, and then applying this to the mixture matrix
M:

��1M = ��1�S = S (66)

. Accordingly, BSS is analagous to a pursuit of the matrix ��1 (commonly
referred to as the unmixing matrix). In practice, little, if anything, is known
about the mixing matrix �, and so an analytical approach to constructing ��1 is
impossible. Instead, BSS methods must take an indirect approach, and optimize
an estimate of the unmixing matrix. Denote the estimate of the unmixing as
�̃�1, then in practice an application of the matrix would be as such:

�̃�1M = S̃ (67)

, where S̃ is an estimate of the signal matrix S. In order to obtain a best
estimate of S, we must find a measure which when maximized or minimized
indicates a low degree of mixing (minimizing Gaussianity is a common test).
Define an arbitrary satisfactory measure d: R

n⇥n ! R, and assume, without
loss of generality, that maximized d corresponds to minimal mixing. And so we
then aim to find a �̃�1 such that d(S̃), or equivalently d(�̃�1M), is a maximum.
This is a maximization problem with n

2 parameters, but we can envision this as
an n parameter problem if we let ~µi represent the i

th row of the matrix �̃�1. It
is convenient to think of d as a mapping from the set {~µi} to the reals. This new
domain treats the maximization problem as a search for optimal n-dimensional
spacial orientations. It is helpful to a�x a subscript to the measure’s notation,
dM , to denote that the measure is implicitly dependent upon the particular
mixture matrix M. We state without argument that it is reasonable to assume
dM is di↵erentiable with respect to each ~µi, thus the problem becomes finding
a set {~µi} such that:

8i, @dM

@ ~µi
= 0 (68)

. Though the partial derivative is somewhat abstract, not mathematically rig-
orous, and generally not indicative of the actual approach taken by a solving
algrithm, it elucidates the broader structure of the approach which is not ap-
parent if the technique is articulated as a maximization subject to n

2 individual
parameters. In practice, there may be several solution sets (corresponding to
global extrema and possible local extrema), and it then becomes imperative to
evaluate dM . The solution set {~µi} that maximizes the value of d constructs
the best estimate of the unmixing matrix ��1. This ensures that the extracted
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S̃ is the best estimate of S for the given measure dM . To optimize results, the
choice of dM will generally depend upon assumptions about the nature of the
fundamental signals.

6 Integrating ICA and HOSA

Our stated purpose is to identify and quantify nonlinear correlations between
environmental channels and the dark fringe. For a more complete explanation
of the integration technique, the reader is referred to [5]

We define a main channel of interest, z, and two mixture groups x and y such
that:

x =
n�1X

i=0

c1,isi (69)

y =
n�1X

i=0

c2,isi (70)

, where {c1,i : 0  i  n � 1} and {c2,i : 0  i  n � 1} are sets of scalars and
{si : 0  i  n � 1} is the set of available data channels. It is also convenient
at times to use vector representation, so that we write:

~x = ~c1S (71)

~y = ~c2S (72)

, where ~x, ~y, ~c1, and ~c2 are row vectors and S is a matrix defined in a similar
sense as that in (63). For simplicity, let ~zk, ~xk, ~yk be the k

th component of the
vectors ~z, ~x, and ~y respectively. We then denote the Fast Fourier Transform
(FFT) for these series as:

Z(!) =
n�1X

k=0

~zke
�2⇡i! k

n (73)

X(!) =
n�1X

k=0

~xke
�2⇡i! k

n (74)

Y (!) =
n�1X

k=0

~yke
�2⇡i! k

n (75)

, where the argument ! is a particular frequency. We are then interested in the
quantity:

�zxy(!1, !2) = E[Z⇤(!1 + !2)X(!1)Y (!2)] (76)

. We hope to extremize:
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⇤0 =
�����zxy(!1, !2)

����
2

(77)

, but we immediately observe that ⇤0 can be made arbitrarily large by making
the scalar values k~c1k and k~c2k arbitrarily large. Hence, we must subject our
extremization to a reasonable condition that prevents arbitrarily large ⇤. We
choose to restrict the the bispectra of x and y such that:

�xx(!1) = �yy(!2) = 1 (78)

. This condition will place su�cient bounds upon ~c1 and ~c2. We employ the
method of Langrangian multipliers and construct a new quantity that we wish
to extremize:

⇤ =
�����zxy(!1, !2)

����
2

+ �1�xx(!1) + �2�yy(!2) (79)

. So our problem is to find vectors ~c1, ~c2 that maximize ⇤. The mathematics
are quite lengthy, and will not be included here, but it can be shown [5] that
the problem simplifies to a search for the largest eigenvalue of:

U
�1
X

T �zxyU
�1
Y U

�1
Y

+�+
zxyU

�1
X

⇤ (80)

, where:

�xx = U
+
XUX (81)

�yy = U
+
Y UY (82)

for a specified combination of frequencies. From this eigenvalue we can optimize
the group mixing coe�cients c1,i and c2,i. The cross-bispectrum is then evalu-
ated for the groups and main channel and plotted. This value tells us whether
a modulation between a frequency of one group and that of another are present
in the main channel.

The product of our evaluation will be a visual that allows for interpreta-
tion, we choose this product to be the cross-bispectrum of two groups of chan-
nels and one main channel. The expectation is that the dark fringe channel
V1:Pr B1 ACp will serve as the main channel. The script allows for frequency
window specification with respect to both groups, and also allows the user to
set a threshold percentage for the results. A time window is selected and the
channels are transformed into frequency domain series; the appropriate calcula-
tions ensue. It is possible to specify a given number of successive time intervals
over which the results are averaged.
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7 Applying Technique to VIRGO Data Chan-
nels

Though time for actual testing of the code was extremely limited, certain
observations and explications are worth including.

7.1 Simulated Data Testing

When testing an algorithm, it is often useful to use inputs that are designed
with expected, well understood outputs, which can then be juxtaposed with
actual outputs. Unfortunately, there was not su�cient time to perform an
extensive test of the script with simulated data, and the coding seemed to have
a hard time handling modifications of the simulated data forms. This would
suggest that the parameters for creating the simulated data are not limited in
such a way that is fully compatible with the script. Future work with simulated
data is a possibility, but is not of primary concern.

7.2 VIRGO Data Testing

The VIRGO data tests illustrated several distinct problems with the algo-
rithm. The most obvious issue is the existence of unwanted artifact structures
which visually suggest correlations that do not exist. The prevalence of the
phantom structures is troubling, and probably arises from the frequency resolu-
tion with which the algorithm is implemented. If this is indeed the case, longer
periods of averaging will not necessarily hide these artifacts.

More cause for concern are the inconsistencies in the visual between evalu-
ations for di↵erent frequency windows. Oftentimes structures will appear at
certain locations in particular evaluations, only to be completely absent, or of
di↵erent nature, when the frequency window is adjusted (see presentation slides
for figures). The reason for this is less clear than that of the artifact issue. It
is possible that this is actually an extension of the artifact problem, and that
di↵erent frequency windows produce di↵erent artifacts.

The limits of the script quickly become apparent when running evaluations.
The length of signal time intervals, which will theoretically increase the accuracy
of the script output as it increases, is restricted by limited computing power,
and so a proper implementation of the algorithm will likely require a better
computer. Even within reasonable limits, the evaluations often take upwards
of fifteen minutes, which severely limits the e�cacy of the script as a real-time
indicator.

7.3 Conclusions

At this point there is no basis for drawing any conclusions about the actual
VIRGO apparatus or noise within. Any conclusion must be an evaluation of the
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methodology and intent of the work rather than of the work itself. Confidence
in the script’s ability to identify nonlinear behavior can be separated into two
components: theory and practice.

In theory, it appears that the algorithm is capable of detecting nonlinear
correlations between channels. The cross-bispectrum is a legitimate measure of
nonlinearities, and the optimization technique has proven to be e↵ective (though
further exploration should be done). Justifications for the method can be found
in [5], and are well defended.

In practice, the script has not reached the point where it could be utilized by
monitors in the control room. It is not yet ready for real-time analysis, and it
is not immune to artifacts of the algorithm. Any further conclusions about the
script would be unwarranted.

8 Future Work

The work and analysis outlined in previous sections does not constitute a
successful realization of the goals stated in Section 1. As such, it is imperative
that we work to improve our approach to the matter in the future. Though
decreased proximity and access to data strings of interest will be significantly
limited, there are still several projects that are reasonable to undertake. This
section considers certain projects worth pursuing.

8.1 Algorithm Refinement

The algorithm itself is central to any future work, and it would be worthwhile
to fix or refine any issues there might be. Notably, the script is very slow to
evaluate; a truth that has hampered serious testing. It would merit the e↵ort to
cut down on the computational load of the algorithm. Other improvements not
related to speed or e�ciency are listed and briefly outlined in this subsection.

8.1.1 Nonlinear Indicator

One approach to improvement might be to reconsider the measure of non-
linearity that the algorithm employs. In order to determine the utility of such
an approach, the physical interpretation of the current measure requires fur-
ther exploration. Referral to a physical meaning allows us to choose a statistic
that best amplifies nonlinearities of the nature that are most expected in the
experiment. In the time domain, kurtosis is a very popular indicator, however
the frequency domain is largely unchartered with respect to our maximization
problem.
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8.1.2 Signal Pre-Processing

The script output appears to be very noisy, especially for small frequency
windows, and it could possibly benefit from pre-processing VIRGO data chan-
nels (windowing, whitening, etc.). A more rigorous analysis of the script may
yield more insight into this issue, and we might possibly be able to develop a
successful signal cleaning method.

8.1.3 Unknown Bug Testing

It is very likely that all the issues with the script have not been uncovered
as of yet, and more testing with both simulated data and actual VIRGO data
needs to be done to identify such problems. Any work with actual data from any
of the VIRGO sensors and probes would be restricted by the author’s limited
access to the VIRGO network, though that is not to say that such a pursuit is
not possible in the future. One known issue is the window inconsistency, the
source of this issue, however is not clear and will require more work with the
script.

8.2 Channel Selection

There is a tremendous amount of data available from probes and sensors
throughout the apparatus and surrounding area which we could potentially an-
alyze. The computational requirements of each evaluation, along with the large
number of possible group arrangements makes a comprehensive approach unrea-
sonable. Even given a set group length, testing all, or even most possible group
arrangements is beyond our capability. Because of this, it is important that we
are able to focus our e↵orts on channels that present the greatest potential for
containing nonlinearities. This selection requires knowledge of possible sources
of nonlinear processes in the experiment that is currently not available or not
organized.

8.3 Quantification and Interpretation

As of yet, we do not have a structured approach to interpreting the visual
output of the script. To develop such an approach will require extensive testing
of the script, certainly involving more simulated data. As was mentioned ear-
lier in this article, more research into statistics that might provide meaningful
quantifying values could act as a possibility, though it would be well beyond
any results reached in this article.
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