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This is an exploration of the efficacy of single channel ICA (SCICA) when applied to a gravitational
signal buried in strong noise. The main motivation for the research is for analyzing waves incoming
from the Virgo ground-based interferometer in Cascina, Italy, where the signal to noise ratio is
extremely low. The student research was done as part of an NSF International Research Experience
for Undergraduates (IREU) through the University of Florida, in collaboration with the INFN and
the University of Naples, ”Federico II.”

I. GRAVITATIONAL WAVEFORMS

Models of two astrophysical sources of GW are consid-
ered in this paper. Inspiraling binaries are modeled for
simplicity as chirps, while pulsars are modeled for sim-
plicity as sine waves.

While there have been efforts to describe the wave-
forms corresponding to gravitational sources, matched fil-
ters were shown to overestimate the signal-to-noise ratio
(SNR) of stellar mass binaries [3]. When templates used
for matched filters do not correspond accurately to the
incoming signal, the signal may not be detected. There-
fore it is of great importance to implement blind methods
which do not rely on previous knowledge of the signal.

II. BLIND SOURCE SEPARATION

In order to search for GW signals without knowing the
waveform, we use blind source separation (BSS). The
method of BSS considered is Independent Component
Analysis (ICA). ICA assumes only that the sources are
statistically independent and that no more than one of
the sources is Gaussian. ICA arose out of neural networks
and information theory, and can be done either by ne-
gentropy maximization (ME) or minimization of mutual
information (MMI). With blind source separation is that
the probability density function (pdf) of the sources must
be estimated without any information of the sources.

FastICA is one algorithm to implement ICA that uses
a non-linearity g in place of the pdf and uses a iterative
learning algorithm to maximize negentropy J .

J(y) = [E < G(y) > −E < G(v) >] (1)

where y and v are both of zero mean and unit variance.
g is the derivative of G. The observed signals are repre-
sented as X = AS, where S is a matrix of the unknown
source signals, and A is an unknown mixing matrix. The
source signals are recovered by S = A−1X, or S = WX,
where W is the inverse of A. W is randomly chosen and
then updated in iterations so that wT x maximizes the
negentropy J.

The following is the FastICA one-unit algorithm:

1. Choose random weight vector w.

2. Let w+ = Exg(wT x) − Eg′(wT x)

3. Let w = w + /||w + ||

4. If not converged, go back to 2.

Decorrelation must be performed after each iteration
to ensure that wT x converges to different maxima. Con-
vergence is achieved when old and new values are paral-
lel, and can be done through symmetric decorrelation or
deflation.

EFICA (Efficient FastICA) is an improvement on the
FastICA algorithm that uses a different nonlinearity for
each signal in an attempt to reach the Cramer Rao
bound. The EFICA algorithm has been charted with
a flowchart in Figure 1.

Here is an example of how EFICA is able to better re-
cover four deterministic signals. The original figures can
be seen in Figure 2. While neither recovered perfectly all
four signals, EFICA in Figure 3 far outperforms FastICA
in Figure 4.

FIG. 1: EFICA Flow Chart

III. TIME DELAY EMBEDDING

Taken’s embedding theorem states that if you are able
to observe a scalar quantity of dynamic variables then
the geometric structure may be unfolded in phase space
composed of vectors that are components of the scalar
observation applied to powers of the dynamic random
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FIG. 2: original signals
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FIG. 3: efica signals

variable. The observation and the random variable must
both be sufficiently smooth and the euclidean dimension
is sufficiently large [4].

ΦT (x) = (α(x),α(f(x)), ...α(fk−1(x))) (2)

In time delay embedding, the dimensions are formed
by time delays of the random variable.

ΦT (x) = (α(x), α(x + τ), α(x + 2τ), ...α(x + Nτ)) (3)

When a signal is properly embedded it can be seen
clearly without overlaps.

A. Time Delay τ

Taken’s embedding theorem does not specify how to
choose τ , though it must be a multiple of the sampling
frequency. A change in /tau is very important as it is
amounts to a change in coordinates, and so it must be
chosen before the minimum embedding dimension. If τ is
too large there is not information supplied by the time de-
lay, while if τ is too small then not enough information is
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FIG. 4: fastica signals

supplied. Treating the average mutual information (MI)
of the data as an improvement on the non-linear autocor-
relation function, τ can be found as the first minimum of
the MI [4]. In Figure 6 can be seen the graph of the mu-
tual information of a univariate chirp using the amutual
function provided with TSTOOL. The chirp is plotted in
euclidean 2-d space in Figure 5.
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FIG. 5: chirp in euclidean space

B. Embedding Dimension

If the data is clean then it can be embedded in infinitely
high dimensions. However, the data from ground-based
interferometers is highly contaminated by formally in-
finitely dimensional noise. Therefore, it is important to
embed the signal in the lowest dimension in which the
signal is properly embedded. The minimum embedding
dimension is found by using the method of false near-
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est neighbors. An improvement on this method is the
Cao method, which is included in the TSTOOL package.
Figure 7 can be used to find the minimum embedding
dimension, which is subjectively chosen as the point at
which the false nearest neighbors levels off.

2 4 6 8 10 12 14

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Dimension (d)

E1
(d

)

minimum embedding dimension: cao

FIG. 7: cao: minimum embedding dimension

In Figure 8 it can be seen that 2-dimensions is not
enough to embed, while in Figure 9, 3-dimensions is
shown to be large enough to prevent overlaps and prop-
erly embed.

IV. LIMITS OF SCICA

A. Noise Limits of Sine and Chirp Signals

For the sine wave,the recovery threshold found in these
trials for the SNR was -29 decibels, though it could be
lower. The limit was tested using EFICA, and the sig-
nal was mixed with noise using a random mixing matrix.
At -29 decibel SNR, the signal was not successfully em-
bedded in 3-d, meaning it had overlaps, but the mutual
information plot was periodic.

FIG. 8: chirp embedded in 2-d phase space

FIG. 9: chirp embedded in 3-d phase space

For the Chirp wave, the recovery threshold found in
these trails for the SNR was -12 decibels for both FastICA
and EFICA, though it could be lower. More trials must
be done.

The recovery for FastICA and EFICA was the same
for chirps, and EFICA did not demonstrate an advantage
over FastICA. For the sine wave, however, more signals
were outputted using EFICA than FastICA. This is most
likely because FastICA selectively disregards certain sig-

TABLE I: Sine Wave mixed with Noise with Random Mixing
Matrix: Signal Recovery Rates with EFICA

Coeff of noise # SNR(decibels) RecoveryRates

.01 37 9/9

.1 17 10/10

1 -3 6/8

10 -23 11/32

20 -29 2/9

30 -32.5 0/9

50 -37 0/9
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TABLE II: EFICA vs. FastICA Recovery Rates for Chirp

Coeff. of noise # SNR(decibels) Fastica EFICA

.01 27.9 6/6 6/6

.1 7.9 6/6 6/6

1 -12 6/6 6/6

2.5 -20.1 0/2 0/2

5 -26.1 0/2 0/2

7 -29.6 0/2 0/2

10 -32 0/5 0/5

20 -38.1 0/5 0/5

FIG. 10: Dirty Chirp (coefficient of noise is .01)

FIG. 11: Spectrogram of Chirp recovered by FastICA (coeff.
of noise of .01)

FIG. 12: Dirty Sine (coefficient of noise is .01)

FIG. 13: EFICA Spectrogram of Sine Wave linearly mixed
with Noise

nals beforehand, while EFICA does not. EFICA may be
better for Chirp signals because of its efficiency, as it is
approximately 3 times faster than FastICA.

B. 3-d embedding

Contamination by noise can prevent the signal from
being correctly embedded in the appropriate dimensions,
as seen in the following figures. To better the chances of
recovery of a signal, one can view the signal in 3-d and
then decide whether or not to choose a different time lag
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FIG. 14: EFICA Spectrogram of Sine Wave linearly mixed
with Noise

FIG. 15: EFICA Spectrogram of Sine Wave linearly mixed
with Noise

and dimension.

C. Signal-to-Interference Ratio (SIR)

The SIR is a feature of EFICA in which it measures
how much of one signal is contained in another. In theory
it is a good measure of recovery of the signals, in the ma-
trix representing SIR in grey tone, but in practice lighter
values, which should correspond to less contaminated sig-
nals, did always not correlate to recovered signals.

FIG. 16: FastICA Spectrogram of Sine Wave linearly mixed
with Noise

FIG. 17: FastICA Spectrogram of Sine Wave linearly mixed
with Noise

D. Ways of Determining SNR

To better predict the recovery rate of a signal, we ex-
perimented with using a matched filter to determine the
SNR.

E. Classifying the Signals

The signals in this report were classified by analysis of
their spectrograms, normplots, histograms, and empiri-
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FIG. 18: FastICA Spectrogram of Sine Wave linearly mixed
with Noise

cal cumulative distributions. In order to go to the next
step, which is to find the probability of signal recovery
given a specific SNR, it is necessary to both automate
the procedure and make it more objective. One way of

determining the presence of a signal without human help
is with kurtosis. Since a Gaussian signal has a kurtosis of
3 the presence of a deterministic signal can be uncovered
by checking whether the kurtosis falls outside of a certain
margin away from 3.

V. CONCLUSION

SCICA alone has proven to be insufficient for a signal
embedded in strong noise. Other methods must also be
applied, including Principal Component Analysis. Fu-
ture work should look for ways to automate the SCICA
procedure so that the probabilities of signal recovery can
be accurately determined.
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FIG. 19: -29 decibel SNR, sine recovery at 70 hz
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FIG. 20: -29 decibel SNR, sine recovery at 70 hz
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FIG. 21: -29 decibel SNR, not embedded in 3d
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FIG. 22: -29 decibel SNR, amutual graph is periodic

FIG. 23: 3-d embedding of sine wave with 56.95 decibel SNR



11

FIG. 24: 3-d embedding of sine wave with 36.99 decibel SNR

FIG. 25: 3-d embedding of sine wave with 16.97 decibel SNR


