
Optical Resonator Calculator:

Gravitational Wave Detector Cavity Simulations

with Processing

School of Physics and Astronomy

University of Birmingham

{

University of Florida

International REU 2009

Jamie Dougherty

University of Rochester

7 August 2009

Project Supervisor: Dr. Andreas Freise

Contents

Table of Contents 1

1 Chapter 1 3

1.1 Introduction . 3

1.2 Tasks . 4

2 Chapter 2 6

2.1 Optical cavities . 6

2.1.1 Types of optical resonators 8

2.1.2 The internal power of the cavity 9

2.2 Guoy phase shifts . 11

2.3 Cavity lengths and tuning . 13

2.4 Behavior of a cavity . 14

3 Chapter 3 15

3.1 Optical Resonator Calculator - The Idea 15

3.2 Project Overview . 16

3.3 The User's Manual . 17

3.3.1 Introducing the GUI components 17

3.3.2 The mathematical details 18

3.3.3 How to use the GUI controls 20

3.3.4 Con�gurations to try 20

3.3.5 Intentional limitations 22

4 Chapter 4 23

4.1 Remaining Problems and Bugs 23

4.2 Possible Future Directions . 25

1

A Appendix A 27

Acknowledgements 38

2

Chapter 1

Introduction

1.1 Introduction

In physics education and research, simulations of physical systems play an

important role. They allow researchers and educators to approximate real

systems simply and quickly, conveying the important relations within the

system. Such simulations are common in physics, but often they are numer-

ical tools rather than graphical. While numerical simulations are powerful,

they are usually not very user-friendly. They sometimes require the user to

understand how the program works and how to interpret the results before

the user can successfully use the program. This, then, can prevent students

or non-scientists from learning from these programs, as well as often being

cumbersome for experienced scientists who are seeking just a simple answer.

Also, for newcomers to programming, it is often di�cult or frustrating to

create new simulations from scratch. Most people create programs by using

bits and pieces of code made by others or by using libraries of code that

take care of most of the di�cult programming details. However, such code

libraries or sample pieces of code are not always available for a particular

problem or �eld.

These problems exists in the �eld of gravitational wave detection and ad-

vanced interferometry. Numerical tools are used to simulate the behavior of

optical systems, but few graphical tools exist. Also, little to no code libraries

relevant to these �elds exist in simple programming languages. Therefore,

3

the goal of the group of students brought together at the University of Birm-

ingham's Astrophysics and Space Research Group was to experiment with

the programming IDE Processing in an attempt to develop some tools for

simulating the optics used in gravitational wave detection. It is our hope

that the graphical simulations and code libaries we have developed can be

used in gravitational wave detection and interferometry research and educa-

tion. For example, simple visual simulations of optics equations should allow

students to gain a more intuitive understanding of the physical meaning of

an equation by outputting graphs which change when the student changes

system parameters.

1.2 Tasks

To achieve this goal, we initially focused our e↵orts on developing some

code libraries relevant to gravitational wave optics. Since we are developing

the code for visual simulations and for use by beginners in programming,

the Java-based IDE Processing was chosen as our IDE. Processing is an

open-source IDE developed for artists and designers with little experience

in programming. It is designed to simplify the programming of visual out-

put. It also provides simple exporting tools for creating PDF �les and Java

Applets, useful for posting the simulations on the Internet ([1]).

Processing provides many libraries which are constantly in development,

but there are few provided libraries relevant to physics. Therefore, we �rst

sought to create a library that we could use later for our simulations. In

particular, I developed a set of code to be used in making two-dimensional

plots. Other students developed GUI (graphical user interface) components

and a three-dimensional plotting program.

This library was then used to develop an optical resonator calculator. This

calculator is meant to simulate an optical cavity such as those used in grav-

itational wave detector interferometers. It provides a simple GUI through

which a user can change parameters of the cavity's mirrors and observe di-

rectly how those changes a↵ect the points at which the cavity is resonant.

More importantly, the code can fairly easily be altered and expanded to

include much more functionality, making it possible for future revisions.

4

Other students developed di↵erent simulations, which will be described later.

All projects are posted on the Internet at

www.gwoptics.org/processing/cavity calculator/

Before describing our work in further detail, some background information

about the physics of the optics and gravitational wave detection is needed.

5

Chapter 2

The Physics of an Optical

Cavity

Gravitational wave detectors are, in principle, quite simple. They consist

of two perpendicular 'arms,' each of which contains an optical cavity (see

Figure 2.1). Generally, these are Fabry-Perot cavities. At the intersection

of the two arms is a beam splitter. A laser pumps light (a Gaussian beam)

to the beam splitter, at which point half the light goes into each identical

arm, bounces o↵ the mirrors (test masses) in the cavities, and returns to

the beam splitter. Once the light reaches the beam splitter again, the two

beams interfere and the signal is detected by a photodetector. When a

gravitational wave is incident on the interferometer, it should appear as an

oscillation of the distance between the `freely-falling' test masses (mirrors)

at the frequency of the graviational wave. (Free-fall is approximated by

suspending the mirrors by thin wires within a vibration-isolation system.)

The mirrors move due to the distortion in space, and the interference pattern

of the light at the beam splitter changes accordingly.

2.1 Optical cavities

The important components for our purposes are the optical cavities (also

known as optical resonators) within the interferometer arms. We will focus

on these for the remainder of the text. Please note that we are assuming

6

Figure 2.1: Diagram of a basic interferometer.

a loss-less cavity for our simulations. A Fabry-Perot cavity, as shown in

Figure 2.2, consists of two highly-re�ecting mirrors. The re�ectivity (R)

of a mirror is the percentage of the light's incident power that is re�ected

by that mirror. (r also represents the re�ectivity of the mirror but is the

percentage of the incident amplitude that is re�ected. They are related by

R = r2.) The light that is not re�ected from the mirror passes through it,

a process called transmission governed by R + T = 1, where T = t2 is the

transmission coe�cient. Optical resonators are made to amplify the light

within the cavity, so the mirrors used are highly re�ective. Essentially, light

enters the cavity through one mirror, re�ects o↵ the opposite mirror, and

returns to the �rst mirror, while some of it is transmitted (exits the cavity)

through each mirror. This light transmitted through the �rst mirror in each

arm is the light that interferes at the beam splitter to form the signal.

Figure 2.2: A Fabry-Perot cavity. [2]

7

2.1.1 Types of optical resonators

When designing an optical resonator, one has to ensure its stability. That is,

certain frequencies of light will form a standing wave within the cavity. The

cavity is considered stable if the focal points of the mirrors and the distance

between the mirrors are such that the internal beam does not continually

grow in size after many re�ections. In other words, the cavity is designed so

that the beam will remain entirely within the cavity's mirrors.

There are �ve di↵erent types of stable two-mirror optical cavities, as shown

in Figure 2.3. These types of resonators di↵er in their focal lengths of the

mirrors (governed by the mirror's radius of curvature) and in their distance

between the mirrors (cavity length). As you can see from Figure 2.3, some

beams have di↵erent shapes within the cavity and are thus chosen for dif-

ferent purposes.

Figure 2.3: The �ve possible types of stable cavities. [2]

8

There are simple mathematical formulae that indicate whether or not a

cavity is stable. In its simplest form, the rule can be stated as follows:

Given a cavity made of two spherical mirrors (of radii of curvature R1 and

R2) separated by a distance L, the cavity is stable if

0  g1g2  1 (2.1)

where

g1 = 1� L

R1
and g2 = 1� L

R2
(2.2)

Graphically, Figure 2.4 shows a plot of the stability region of cavities. If g1

and g2 are such that their intersection lies within the shaded region of this

diagram, then the cavity is stable.

Our theoretical cavity to be discussed later will consist of one �at mirror (in-

�nite radius of curvature) and one mirror with adjustable radius of curvature

(from L, the cavity length, to in�nity). This is essentially a hemispherical

type cavity.

2.1.2 The internal power of the cavity

The light (standing wave) inside the cavity circulates between the two mir-

rors, a process known as power circulation. The power circulation causes

power ampli�cation of the beam. The power inside the cavity is given by

P1 =
T1

1 +R1R2 � 2r1r2cos(2kL+ rt(n+m+ 1))
(2.3)

where T1 is the power transmission of the �rst mirror (given by T1 = t21), R1

and R2 are the (power) re�ectivities of the �rst and second mirror (R = r2),

L is the length of the cavity, rt is the round-trip Guoy phase (explained

later), and n and m represent the transverse modes of the Guassian light

9

Figure 2.4: The stability diagram. [2]

beam (mode TEMnm). This equation is plotted in Figure 2.5. The argu-

ment of the cosine term is the total phase shift of the light in the cavity.

The maximum internal power is achieved when the cosine function is equal

to one. This condition is called the cavity resonance, while the minimum

power is achieved at the cavity's anti-resonance. When one designs a cavity,

resonance is desired ([3]).

Many factors can a↵ect the resonance properties of the cavity, as can easily

be seen from Equation 2.3. Most notably, the periodicity of the function is

governed by the cosine term. 2kL can be rewritten as

2kL = 2⇡f
2L

c
=

2⇡f

FSR
(2.4)

10

Figure 2.5: A graph of the internal power of a cavity.

where f is the light's frequency, c is the speed of light, and FSR is the

free-spectral range of the cavity|the frequency separation between resonant

frequencies (see Figure 2.5).

2.2 Guoy phase shifts

As mentioned previously, the beams used in these cavities are Gaussian

beams. Figure 2.6 shows the beam pro�le along the z axis of a Gaussian

beam. In contrast to plane waves, when a Gaussian beam propogates, it ac-

quires a phase shift. This e↵ect is most pronounced for Hermite-Gaussmodes

close to the beam waist where the phase velocity is slightly slower than com-

pared to plane waves ([3]). The Guoy phase () can be calculated along the

z axis by

 (z) = arctan(
z � z0
zR

) (2.5)

11

where zR is known as the Rayleigh range of the beam, given by

zR =
⇡w2

0

�
= 2

p
(Rc(z) ⇤ (z � z0))� (z � z0) (2.6)

Figure 2.6: The beam pro�le along z of a Gaussian beam.

The Guoy phase calculated with Equation 2.5 is the phase shift of the beam

in one direction. For our purposes, we are interested in the round-trip Guoy

phase|the phase it acquires by the time it re�ects o↵ the second mirror and

returns to the �rst. The round trip Guoy phase needed in Equation 2.3 is

simply two times the Guoy phase given by Equation 2.5:

 rt = 2 ⇤ (z) = 2 ⇤ arctan(z � z0
zR

) (2.7)

Since, in Equation 2.3, the Guoy phase is multiplied by the term n+m+1,

it can be seen that the overall phase shift is larger for higher-order modes

(higher values for n and m). Therefore, beams with di↵erent mode orders

will have di↵erent phase shifts, and the plots of their power enhancement

functions will be o↵set from one another. They will also, then, have di↵erent

resonance frequencies for a given cavity. Figure 2.7 shows a plot of Equation

2.3 for modes 00 (red), 10 (green), and 20 (blue). Note that two modes can

be resonant at the same frequency if their phase shifts are the same.

12

Figure 2.7: Internal power of a cavity plotted for three modes.

2.3 Cavity lengths and tuning

The distance between optical components in a cavity is conventionally de-

scribed as a sum of macroscopic and microscopic distances. Some properties

of the cavity, such as the free spectral range, depend on the macroscopic

distance between the optics. For those properites, changing the separation

between the mirrors on the order of one laser wavelength will not a↵ect their

values. However, the resonance condition of the cavity depends on the mi-

croscopic displacements of the mirrors, and thus both parameters must be

considered. The distance, D, between the mirrors is written as

D = L+ T (2.8)

where L is the macroscopic length and T is the tuning, or the microscopic

displacement from the exact given macroscopic length. T here is clearly

a distance measurement, but it can be rewritten as a phase shift of the

13

Gaussian beam. We will call this phase shift, governed by the microscopic

tuning, �x ([3]).

Now, Figure 2.5 plots the internal power of the cavity against frequency.

It shows, for example, that the cavity is resonant at the frequencies that

correspond to the peaks in the graph. Note that Figure 2.7 plots the internal

power against �x, a value expressed in degrees. These are the same graphs

but plotted as functions of di↵erent (equivalent) variables. The di↵erence

lies in rewriting the argument of the cosine term from Equation 2.3 with �x

instead of 2kL. �x is expressed as an angle measurement, where 2⇡ radians

(or 360�) corresponds to a displacement of the mirror by one wavelength.

We have chosen to plot over �x instead of f because we are assuming a

system with a �xed laser frequency and a tunable mirror displacement.

2.4 Behavior of a cavity

For the moment, we are interested in the resonant properties of a cavity

as it a↵ects the internal power of the cavity and the transmitted power

(through the second mirror). This behavior for a two-mirror cavity depends

on the length of the cavity and on the re�ectivities of the mirrors. There

are, then, three di↵erent cases that can govern this behavior. If T1 < T2,

the cavity is undercoupled. If T1 = T2, the cavity is impedance matched. If

T1 > T2, the cavity is overcoupled. (Note that these can be rewritten as: If

R1 > R2, the cavity is undercoupled ; if R1 < R2, the cavity is overcoupled.)

An undercoupled cavity will transmit little power through mirror 2 and

will not have much circulating power. An overcoupled cavity will have the

greatest circulating power and other internal resonance conditions. However,

an impedance-matched cavity maximizes the power transmission, and it is

the only condition under which the cavity can transmit (on resonance) one

hundred percent of the input power ([3]).

14

Chapter 3

The Optical Resonator

Calculator

3.1 Optical Resonator Calculator - The Idea

It was our goal to express some of the equations and properties of optical

cavities (as described in Chapter 2) visually. A graphical representation

can often teach much more about an equation's properties than doing the

calculations by hand. It can give a student (or researcher) a more intu-

itive understanding of what the equation actually means in a physical sense.

Therefore, with the background knowledge about the physics of optical sys-

tems, we hope to create a useful visual tool (and reusable code) to simulate

the properties discussed above as they pertain to gravitational wave detector

interferometers.

For our �rst version of the calculator, we chose to model the internal power

of a two-mirror optical cavity as a function of the tuning. The cavity being

modeled consists of one �at mirror and one spherical mirror. It is important

to model the internal power because it shows, graphically, the tuning values

for which the cavity is resonant or anti-resonant. We wanted to plot the

internal power for three di↵erent transverse modes: TEM00, TEM10, and

TEM20. Also, we thought it would be interesting to visually depict the

output power of the cavity at a user-de�ned value for tuning. We gave the

user the ability to control, via simple sliders and text �elds, the re�ectivities

15

of each mirror, the radius of curvature of the second mirror, and the value of

�x (the tuning). With this setup, this version of the calculator should help

users to visualize the internal power function, the Guoy phase, the power

output, the FSR, and the overall phase shift of a beam. Also, it should depict

how changing the re�ectivities or radii of curvature of a cavity's mirrors

a↵ects the beam inside the cavity.

3.2 Project Overview

The Processing IDE which we chose to use for our program already had

code libraries for simple GUI components. For example, it provides code for

check boxes, text �elds, buttons, and some other components. However, it

had very little or no libraries pertaining to sliders, meters, or graphs. Our

�rst task, then, was to write extendable libraries for the components we

needed. Each student in our group had a di↵erent main project, but each

of us wrote some library functions that could be used by all of us (and by

others). I will focus only on the small pieces that are directly used in the

Optical Resonator Calculator. One student in our group, Daniel Brown,

wrote the library for, among many other things, the sliders. Charlotte Bond

wrote the code for the LEDMeter, the meter which is used in this case to

show the cavity's transmitted power.

I, then, wrote a two-dimensional plotting library. This plotting library allows

a user to plot many traces and many separate graphs. It can plot any

two-dimensional function. Other (and probably better) plotting libraries

exist in Java or Processing, but it was an integral part of my education in

programming to write a plotting library from scratch. Rather than simply

using a pre-made library, I designed my own as an exercise in becoming more

familiar with the language and object-oriented programming.

All three of these libraries were designed to be very general so they could

be incorporated into various programs. I will not go into further detail here

about how these libraries work because it is all explained in the actual code.

The code for the optical resonator calculator, which uses these libraries, is

included in Appendix A. This should give a more complete picture of how the

various libraries and components are linked to create the Optical Resonator

Calculator.

16

3.3 The User's Manual

The Optical Resonator Calculator program has been uploaded to the project's

webpage as a Java applet with some explantory text. This Java applet mod-

els some features of an optical resonator (also known as an optical cavity)

using a graphical user interface (GUI). The GUI allows a user to change

some of the cavity's parameters. Figure 3.1 is a screenshot of the actual

calculator. Please refer to this image throughout the following discussion.

Figure 3.1: A screenshot of the optical resonator calculator.

3.3.1 Introducing the GUI components

The image on the bottom left of the calculator in Figure 3.1 is a diagram

of the cavity. This very simple cavity has essentially the same basic setup

and functionality as the cavities in each arm of a gravitational wave inter-

ferometer. It consists of a laser, two mirrors (in this case, one �at and one

with a variable radius of curvature) with variable re�ectivites, a beamsplit-

ter with two photodetectors, and a photodetector for the light transmitted

through the second mirror. Note that there are three sliders and accompa-

17

nying text �elds overlaying the cavity image. The bottom left slider controls

the re�ectivity of the �rst mirror, while the bottom right slider controls the

re�ectivity of the second (rightmost) mirror. These re�ectivities can range

from 0.00 to 0.99, as one cannot have a mirror with a perfect re�ectivity of

1.00. These will be referred to, respectively, as the \R1 slider" and the \R2

slider." (Likewise, the left mirror is mirror 1, and the right mirror is mirror

2.) The remaining slider above these controls the inverse of the radius of

curvature of the second mirror, and will commonly be referred to as the

\RoC slider."

The graph above the cavity schematic is the graph of the logarithm of the

cavity's internal power as a function of the microscopic tuning of the second

mirror. The logarithm of the internal power is plotted for three di↵erent

transverse modes: TEM00 in red, TEM10 in green, and TEM20 in blue.

(The use of the logarithmic scaling will be explained later.) The tuning is

measured in degrees, where 360� is a microscopic displacement of the second

mirror by one wavelength. Below the graph, there is a slider (called the \�x

slider"), which can be placed anywhere along the x axis. By default, this

slider has a white line attached to it that indicates precisely where the slider

is lining up with the plots above.

Finally, the meter on the bottom right of the calculator below the text box

indicates the percentage of the input power that is outputted through the

second mirror (reaching the rightmost photodetector). We will call this

meter the \transmitted power meter," or simply \the meter." This meter is

linked to the �x slider, so it shows the total power output for the tuning

value given by the �x slider.

3.3.2 The mathematical details

This calculator is essentially only using two equations. It is graphing the

base-10 logarithm of the internal power function given in Chapter 2 by Equa-

tion 2.3. The actual function being plotted, then, is

log(P1) = log(
T1

1 +R1R2 � 2r1r2cos(2kL+ rt(n+m+ 1))
); (3.1)

18

where, rt is the Guoy phase given by Equation 2.7. Then, the calculator

computes the transmitted (output) power of the cavity by adding, at the

chosen value of �x, the internal power functions for each mode and multi-

plying the sum by the transmission coe�cient of the second mirror. Since

R2 + T2 = 1, this coe�cient is simply given by

T2 = 1�R2 (3.2)

where R2 is controlled by the R2 slider. Therefore, for a given beam with

1W of input power and mode TEMnm, the transmitted power, Ptrans, is

calculated as

Ptrans = 10log(P1) � T2 (3.3)

In the cavity used in this calculator, there are three beams (three di↵erent

transverse modes). Each beam, for the sake of overall simplicity, has an

input power of 1
3 W , so that the total input power for the cavity is 1W .

Therefore, the maximum amount of power that can be transmitted through

the second mirror is 1W , as shown on the transmitted power meter. (As

explained in Chapter 2, this can only occur in an impedence-matched cavity.)

It is convenient for the transmitted power meter to range in value from 0

to 1 because it can then be thought of as representing the percentage of the

input power that is being transmitted (e.g. a value of 0.89 is 89% of the

input power).

To improve the appearance of the plot of the cavity's internal power, it is

typically graphed on a logarithmic scale. This is done because the peaks

in the plot on a normal scale become extremely sharp, especially for highly

re�ective mirrors. Plotting on a logarithmic scale smooths out the graph

a little bit. When you look at the calculator's graph, you may wonder

why we are plotting the logarithm of the power, rather than plotting the

power on a logarithmic scale. We chose to do this because having axes with

evenly-spaced tick marks is much more compatible with the two-dimensional

plotting function that I wrote than having axes on a logarithmic scale. When

viewing the graph, the user still has the ability to see what value the power

has, and it does not make the calculations much more di�cult.

19

3.3.3 How to use the GUI controls

The controls have been designed to be as simple as possible to use. Each

slider can be controlled by the mouse by either clicking or dragging the slider

to its desired position. Also, if you set the program's focus to a particular

slider by clicking on it, that slider can then be moved by one pixel at a time

using the left and right arrow keys. This helps mostly for the �x slider

when trying to choose a precise tuning value.

When the slider value is changed in this way, the associated text �eld changes

to the chosen slider value. Additionally, the slider value can be changed by

directly typing the desired value into the text �eld and then hitting the

`Enter' key. Note that if `Enter' is not pressed, the slider will not update

to that value. The R1, R2, and �x sliders all have a maximum precision of

two decimal places. If you type in a value of, say, 0.487, the slider should

round this number to 0.49. However, it is best if at most two decimal places

are used so unexpected rounding does not occur.

Finally, please note that the RoC slider actually controls the inverse of the

radius of curvature of the second mirror. That is, the value represented by

the RoC slider is actually 1
RoC . This is done so the radius of curvature can

range from L (the cavity length, 1m) to in�nity (a �at mirror). In�nity can-

not be represented by a slider, but 1=infinity is essentially zero. Therefore,

the RoC slider ranges from 0.0 (for an in�nite radius of curvature) to 1.0

(for a radius of curvature equal to the cavity length of 1m).

The �x slider does not have a text �eld, and it does not display its current

value. The value is represented by the corresponding tick marks on the x

axis of the graph. By default, this slider has a white line linked to it which

helps to see where on the graph the slider is positioned. This line can be

switched o↵, though, by unselecting the check box to the right of the graph

labelled \Show white line for delta x."

3.3.4 Con�gurations to try

In most optical resonators, highly re�ective mirrors are used to enhance the

power within the resonator. This is true for gravitational wave interferom-

eters. If you set the R1 and R2 sliders to 0.99 re�ectivity, you will see that

20

the peaks in the internal power plot become very sharp. Equation 3.3 shows

that the transmitted power is proportional to T2. When R2 is very close to

1.00, T2 becomes very small. Therefore, the internal power is only large for

resonance conditions. This makes the precise tuning of the cavity extremely

important if one is to achieve resonance.

The calculator will also allow you to visualize the di↵erences among un-

dercoupled, overcoupled, and impedance-matched cavities. These con�gu-

rations were described in detail in Chapter 2. The calculator's default is an

impedance-matched cavity with high re�ectivities (R1 = R2 = 0:96). This

is the only condition under which, on resonance, the cavity can transmit all

of the input power (in this case, 1W). Altering the radius of curvature of

the second mirror (using the RoC slider) changes the Rayleigh range (zR)

of the beam and therefore the round-trip Guoy phase (see Equation 2.7).

In particular, the larger the radius of curvature (as 1=RoC approaches 0),

the smaller the Guoy phase shift. This is why as you decrease 1=RoC, the

peaks of the internal power for the di↵erent modes become very close and

eventually overlap. At an in�nite radius of curvature, the Guoy phase shift

is 0, and multiplying the phase shift by (n+m+1) (as in Equation 2.3) will

not change the overall phase shift for di↵erent modes.

An undercoupled cavity is one in which T1 is less than T2, so R1 is greater

than R2. This type of cavity has little circulating power. If you set the

R1 slider to be greater than the R2 slider, you can notice that the internal

power becomes small, and even on resonance there is very little transmitted

power (compared to an impedance-matched cavity).

An overcoupled cavity is one in which R1 is less than R2. It has a high

circulating power compared to an impedence-matched cavity which has re-

�ectivities equal to the lower re�ectivity in the overcoupled cavity. However,

with R2 high, T2 is low and there is little transmitted power.

These are some of the simple cavity properties that this calculator illustrates.

At the very least, it should give users a more intuitive sense about how the

cavity parameters a↵ect its resonance properties. It is probably most useful

if one views the circulating (internal) power function (Equation 2.3) while

running the program to see how the plots are being a↵ected.

21

3.3.5 Intentional limitations

In the �rst and current version of this calculator, the user only has limited

control over the cavity's parameters. Only four parameters can actually be

set by the user: the re�ectivity of the �rst mirror, the re�ectivity of the

second mirror, the radius of curvature of the second mirror, and the tuning

of the cavity. Giving the user many more values to change would make it

more di�cult for the user to really learn a few basic concepts about cavities

and could be confusing. We wanted to make this version simple so that it

would illustrate only a few key points. Therefore, the user cannot change

parameters such as the con�guration of the cavity, the cavity length, the

curvature of the �rst mirror, the beam modes, etc. We felt that this would

be too much information to include in an educational or reference tool,

though it probably would not be very di�cult to include in future versions.

Also, this applet is not quite a calculator in the usual sense of the word. In

a usual calculator, one would enter some values and get precise numerical

answers in return. While this is certainly useful, outputting exact numbers is

not necessarily useful when simply portraying relations between parameters.

It may also become overwhelming or confusing for a student using the tool

if many numbers are outputted to the screen. Again, though, numerical

output could be easily included in future versions of the calculator if so

desired.

22

Chapter 4

Bugs and Future Directions

4.1 Remaining Problems and Bugs

There are only a few remaining problems with the current version of the

Optical Resonator Calculator. These are described in detail below. For the

more code-involved problems, it would probably help to know how the actual

code works (in the libraries and the source code included in Appendix A).

However, the explanations of the problems below should not require much

prior knowledge of the code.

The most notable bug can be seen when the re�ectivities of the mirrors are

very high (& 0:97). In this case, it is di�cult to align the �x slider with

the peaks precisely, and the transmitted power meter does not quite display

the correct value. For instance, if R1 = R2 = 0:99 and 1=RoC = 0:5, if

the cavity is on resonance, the meter should read, for each beam mode, a

transmitted power of 1
3 W. The value it actually shows is closer to 0.1W.

This bug is probably due to an inherent resolution issue with the graphical

output. To increase the resolution around sharp peaks, the two-dimensional

plotting function implements a loop which is not also implemented exactly

by the transmitted power meter calculations. In this loop, for each pixel

along the x axis, the plotting function converts the pixel number into graph

units, takes six points in graph units between each pixel, calculates the y

value for each of these points (in graph units), and �nally chooses to plot

the maximum of these as the y value corresponding to the original x pixel.

23

For various detailed reasons having to do with object-passing and private

variables, this same loop is not easy to use for calculating the transmitted

power. Currently, the calculation for the transmitted power does not directly

'read' the y values o↵ of the graph. Instead, it computes the y value given

the value of the �x slider without the loop just described. Therefore, I

believe the values being plotted are not quite the same values computed at

the precise value of the �x slider. This may cause the slight discrepancy for

sharp peaks. This may not be the actual reason, though. This bug was not

resolved after several attempts and adjustments and therefore has been left

for future revisions.

The remaining problems are not necessarily bugs but rather improvements

that should probably be made to the code. Currently, the program (or

'sketch' as it is called in Processing) invokes a lot of processing time from the

computer running it. In Processing sketches, there are two main functions:

setup and draw. The setup function is meant to contain all the object and

variable declarations, initializations, and other �xed parameters. It only

runs once when the sketch runs. The draw function, however, is meant to

react to changes made while the sketch is running (such as moving a slider).

Therefore, it runs many times to update the graphics. In this sketch, this

and the functions doing the calculations seem to be consuming a lot of

processing power. Slight code variations should be implemented to reduce

this problem. For example, telling the draw function to run only if some

'event' has actually occurred. Other modi�cations could be made to make

the sketch more e�cient.

Finally, due to my relative lack of experience in programming, there are

some limitations in the two-dimensional plotting class. It is quite sensitive

to the precise numbers being use for, say, the axis length and the tick mark

spacing. This issue is described in the comments of this code, but it should

be highlighted here as well. In order for the scaling between the pixels

and the graph units to be accurate when calculating the actual plot, one

must be very sure that the axis length is an exact multiple of the spacing

between the tick marks. If this is not quite possible, the plots may be

slightly inaccurate. Now, the spacing between the slider's tick marks is, on

the other hand, calculated by dividing the axis length by the number of tick

marks the user wants on the slider. This can lead to small rounding issues

because pixels must be represented as integers. If the quotient done in this

24

calculation is not exactly an integer, the quotient is rounded or truncated.

In the Optical Resonator Calculator, the x axis of the graph is supposed

to be precisely linked with the �x slider. Because of this di↵erence in the

coding of these two components, one has to be very careful (and very precise)

about the values chosen for each. There does not seem to be a problem in

this program, but if modi�cations are made, this con�ict must be taken into

account.

4.2 Possible Future Directions

One of the main purposes of this project was to establish a foundation for

possible future simulations for gravitational wave detector optics. A large

amount of the time was spent writing library codes in the hope that they

would be used in other projects. The simulations created, like the Optical

Resonator Calculator, were intended to be used on the Internet but also to

show other people what can be done with the library code.

This calculator is simply the �rst version created of what could be a series of

di↵erent simulation programs/applets. With this in mind, some suggestions

have been compiled for possible newer versions of the calculator:

Output some numerical values given the slider or text �eld input

Allow adjustments to more parameters (cavity length, beam modes,

input power, mirror 1 radius of curvature, cavity con�guration, etc.)

Output an image of the beam shape

Calculate waist size of the beam at a chosen point

These are by no means all the possible things that could be implemented or

useful, but some would probably be a good starting point. We hope that

the simulations will remain self-consistent and simple, portraying only a few

concepts in each simulation.

With the foundational projects the students working with Dr. Andreas

Freise at the University of Birmingham have done this summer, more sim-

ulations and educational and research tools should begin to be created for

gravitational wave detector optics. For additional information concerning

the projects done this summer, please refer to

25

www.gwoptics.org/processing/

Also, more details about the source code can be found in Appendix A,

complete with all comments.

26

Appendix A

Appendix A

This is the exact Processing source code (as of 7 August 2009) being used for

the main �le of the optical resonator calculator. It uses quite a few libraries

(as listed at the top of the code), and it also uses the classes Axis, Axis-

Con�g, GraphCallback, LEDMeter, LEDMeterAxis, PlotAreaBackground,

PlotCon�g, Plotting, and TraceCon�g. This source code may be slightly

modi�ed for the �nal version to be posted online, but the changes will only

be minor alterations. The �nal version's source code and libraries will be

posted online also. For more detail about these classes, one must refer to

the code �les for them, which are not included in this report for the sake of

brevity.

import org.gwoptics.gui.slider.*;

import org.gwoptics.ValueType;

import guicomponents.*;

import org.gwoptics.Logo;

import org.gwoptics.LogoSize;

import guicomponents.GCheckbox;

//declare variables, objects, and fonts

gwSlider R1slider;

GTextField R1textfield;

gwSlider R2slider;

GTextField R2textfield;

27

gwSlider RoCslider;

GTextField RoCtextfield;

gwSlider delta_x_slider;

LEDMeter meter;

LEDMeterAxis meterAxis;

AxisConfig axisconfig;

PlotConfig plotconfig;

TraceConfig traceConfig1, traceConfig2, traceConfig3;

PlotAreaBackground area1;

Axis xaxis,yaxis;

Plotting alltraces;

InternalPower00 mode00;

InternalPower10 mode10;

InternalPower20 mode20;

PFont font;

float R1,R2,delta_x,L,RoC;

PImage cavityimage;

Logo _logo;

PFont titleFont;

PFont expFont;

PFont meterTitleFont;

String explanationtext;

GCheckbox chkWhiteLine;

void setup()

{

size(900,600);

smooth();

L = 1; //length of the cavity is fixed to 1 meter

//initialize the axis, plot, and trace config objects

axisconfig = new AxisConfig();

28

plotconfig = new PlotConfig();

traceConfig1 = new TraceConfig();

traceConfig2 = new TraceConfig();

traceConfig3 = new TraceConfig();

//set the config settings

plotconfig.bordercolor = color(255);

plotconfig.fillcolor = color(0);

plotconfig.borderweight = 3;

axisconfig.axiscolor = color(255);

axisconfig.textcolor = color(255);

axisconfig.tickcolor = color(255);

traceConfig1.tracecolor = color(255,0,0); //each trace has its own

traceConfig1.traceweight = 2; //color so its own config object

traceConfig2.tracecolor = color(0,255,0);

traceConfig2.traceweight = 2;

traceConfig3.tracecolor = color(0,0,255);

traceConfig3.traceweight = 2;

//Initialize the Axes and PlotAreaBackground

//x pos, y pos, width, height, config object

area1 = new PlotAreaBackground(5,15,540,389,plotconfig.getConfig());

//x1,y1,x2,y2,axis label, config, axis zero

xaxis = new Axis(60,350,526,350,"delta x (degrees)",

axisconfig.getConfig(),293);

yaxis = new Axis(60,25,60,350,"log of Intensity",

axisconfig.getConfig(),188);

//Tick label formatting

xaxis.setTickLblFormat("%.0f"); //no decimal places for the ticks

//(length of x axis in pixels)/(its length in graph space)

//= 33.28571429px/graph unit

xaxis.setMajorSpacing(33);

yaxis.setMajorSpacing(54);

//major tick labels start @ 0 and increment by 90

xaxis.setMajorLabels(0,90);

29

//major tick labels start @ 0 and increment by 1

yaxis.setMajorLabels(0,1);

xaxis.isZeroTickDrawn(true);

yaxis.isZeroTickDrawn(true);

//Axis label text formatting

xaxis.setTextPosition(300,400);

yaxis.setTextPosition(25,200);

//Initialize the trace objects

//need to pass the alltraces object the axes to be drawn on

alltraces = new Plotting(xaxis,yaxis);

//these are the internal power equations being used, one for each mode.

mode00 = new InternalPower00();

mode10 = new InternalPower10();

mode20 = new InternalPower20();

//tell alltraces which traces and configs you want

alltraces.addTrace(mode00,traceConfig1);

alltraces.addTrace(mode10,traceConfig2);

alltraces.addTrace(mode20,traceConfig3);

//Initialize and add all the sliders

R1slider = new gwSlider(this,200,559,110);

R1slider.setTickColour(255,255,255);

R1slider.setFontColour(255,255,255);

R1slider.setValueType(ValueType.DECIMAL);

//1.00 reflectivity is unrealistic, so we set the limit to 0.99

R1slider.setLimits(0.96,0.00,0.99);

R1slider.setTickCount(5);

R1slider.setPrecision(2);

//This sets the textfield value for before you move the slider.

R1textfield = new GTextField(this,String.valueOf(0.96),160,557,36,15);

R2slider = new gwSlider(this,370,559,110);

R2slider.setTickColour(255,255,255);

30

R2slider.setFontColour(255,255,255);

R2slider.setValueType(ValueType.DECIMAL);

R2slider.setLimits(0.96,0,0.99);

R2slider.setTickCount(5);

R2slider.setPrecision(2);

R2textfield = new GTextField(this,String.valueOf(0.96f),332,557,36,15);

RoCslider = new gwSlider(this,370,452,110);

RoCslider.setTickColour(255,255,255);

RoCslider.setFontColour(255,255,255);

RoCslider.setValueType(ValueType.DECIMAL);

//represents 1/RoC, so the RoC can range from L to infinity

RoCslider.setLimits(0.5,0,1);

RoCslider.setTickCount(5);

RoCslider.setPrecision(2);

RoCtextfield = new GTextField(this,String.valueOf(0.50f),332,450,36,15);

//doesn't exactly line up with axis but close

delta_x_slider = new gwSlider(this,54,368,478);

delta_x_slider.setTickColour(255,255,255);

//default position for slider, min value, max value

delta_x_slider.setLimits(0,-3.5*PI,3.5*PI);

delta_x_slider.setTickCount(13);

delta_x_slider.setValueType(ValueType.DECIMAL);

delta_x_slider.setPrecision(2);

delta_x_slider.setRenderMaxMinLabel(false);

delta_x_slider.setRenderValueLabel(false);

//x,y,length,num,height,min,max

meter = new LEDMeter(557,490,349,30,20,0.0,1.0);

meter.setGradient();

meter.setGapSize(0);

//xpos, ypos, num labels, xstep, min, max

meterAxis = new LEDMeterAxis(557,500,10,33,0,1);

meterAxis.setFontSize(12);

31

//Importing images

cavityimage = loadImage("cavitypng.png");

_logo = new Logo(this, 770,570,true,LogoSize.Size25);

//Create fonts

titleFont = createFont("verdana",20);

meterTitleFont = createFont("verdana",13);

expFont = createFont("verdana",11);

//Write the explanation here

explanationtext = "This applet graphs the internal power of an optical "+

"cavity as a function of tuning for transverse modes 00 (red), 10 "+

"(green), and 20 (blue)."+

"The slider below the graph controls the tuning of the second mirror. "+

"Below, the meter shows the percentage of the input power that is "+

"outputted through the second mirror at the current value of delta x "+

"(the tuning). The cavity is drawn below the graph. Each mirror has "+

"a reflectivity slider. The 1/RoC slider controls the inverse "+

"of the Radius of Curvature of the second mirror. 1/RoC=0 represents "+

"a flat mirror (infinite RoC), and 1/RoC=1=L represents a radius of "+

"curvature equal to the length of the cavity (1m). "+

"Using the sliders, you should be able to notice changes in the "+

"Guoy phase and the FSR for the different modes. The sliders "+

"can be controlled with the mouse or left/right arrow keys.";

//Adds a checkbox to select whether or not we want the white line

//on the delta_x slider to show. Defaulted to yes/true

chkWhiteLine = new GCheckbox(this,"Show white line for delta x",

550,380,200);

chkWhiteLine.setSelected(true);

}

void draw()

{

background(200,200,200);

32

//Draw plotting area and the traces

area1.drawRect();

xaxis.drawAxis();

yaxis.drawAxis();

xaxis.drawMajorTicks();

yaxis.drawMajorTicks();

xaxis.drawMajorTickLabels();

yaxis.drawMajorTickLabels();

//need to know the x and y axis ranges in graph space

alltraces.plotTraces(-3.5*PI,3.5*PI,-3,3);

//Draw the cavity image

image(cavityimage,10,412);

//Assign the slider values to variables

R1 = R1slider.getValuef();

R2 = R2slider.getValuef();

delta_x = delta_x_slider.getValuef();

RoC = 1/(RoCslider.getValuef());

//Set and write the Title to the screen

textFont(titleFont);

fill(0);

text("Optical Resonator Calculator",720,30);

//Set and write a label for the meter

textFont(meterTitleFont);

fill(0);

text("Percent of Input Power Transmitted",720,480);

//Explanation box

stroke(255);

fill(190,204,223);

rect(575,45,300,328);

textFont(expFont);

fill(0);

33

text(explanationtext,579,49,295,340);

//Add logo

_logo.draw();

//Power meter. Apparently in Processing log is natural log... Also now

//each beam has an input power of 1/3 W, so the total input power is 1W.

float sum_delta_x = (pow(10,mode00.computePoint(delta_x))

+pow(10,mode10.computePoint(delta_x))

+pow(10,mode20.computePoint(delta_x)))/3;

float transmitted_power = sum_delta_x*(1-R2);

meter.setValue(transmitted_power);

meter.response();

meterAxis.display();

//Adjusting the line drawn off the slider for rounding errors

if(chkWhiteLine.isSelected()){

line((delta_x_slider.getValuef()*float(478/22))+293,368,

(delta_x_slider.getValuef()*float(478/22))+293,15);

}

}

//These are the functions that are being plotted. All the same except

//for different values of n

class InternalPower00 implements GraphCallback

{

int n,m;

float Power00;

float zR, psiRT;

public float computePoint(float t_delta_x)

{

delta_x = t_delta_x;

n = 0;

m = 0;

zR = sqrt(L*(RoC-L));

psiRT = 2*atan(L/zR);

34

//Need to convert the natural log to log base 10...

Power00 = log((1-R1)/(1+(R1*R2)-(2*sqrt(R1)*sqrt(R2)

cos(delta_x+(psiRT(n+m+1))))))/log(10);

return Power00;

}

}

class InternalPower10 implements GraphCallback

{

int n,m;

float Power10;

float zR, psiRT;

public float computePoint(float t_delta_x)

{

delta_x = t_delta_x;

n = 1;

m = 0;

zR = sqrt(L*(RoC-L));

psiRT = 2*atan(L/zR);

Power10 = (log((1-R1)/(1+(R1*R2)-(2*sqrt(R1)*sqrt(R2)

cos(delta_x+(psiRT(n+m+1)))))))/log(10);

return Power10;

}

}

class InternalPower20 implements GraphCallback

{

int n,m;

float Power20;

float zR, psiRT;

public float computePoint(float t_delta_x)

{

delta_x = t_delta_x;

n = 2;

m = 0;

zR = sqrt(L*(RoC-L));

35

psiRT = 2*atan(L/zR);

Power20 = (log((1-R1)/(1+(R1*R2)-(2*sqrt(R1)*sqrt(R2)

cos(delta_x+(psiRT(n+m+1)))))))/log(10);

return Power20;

}

}

//This method tells the prorgam what to do if the user

//moves the sliders

void handleSliderEvents(gwSlider slider){

float precision = 100;

if(slider == R1slider){

R1textfield.setText(String.format("%.2f",slider.getValuef()));

}

if(slider == R2slider){

R2textfield.setText(String.format("%.2f",slider.getValuef()));

}

if(slider == RoCslider){

RoCtextfield.setText(String.format("%.2f",slider.getValuef()));

}

}

//This method tells the program what to do if the user types a

//value into a textfield and hits 'Enter'

void handleTextFieldEvents(GTextField tfield){

String line1="";

float temp_val;

if(tfield == R1textfield){

switch (R1textfield.eventType){

case GTextField.CHANGED:

break;

case GTextField.SET:

break;

case GTextField.ENTERED:

line1=R1textfield.getText();

temp_val = parseFloat(line1);

36

R1slider.setValue(temp_val);

break;

}

}

if(tfield == R2textfield){

switch (R2textfield.eventType){

case GTextField.CHANGED:

break;

case GTextField.SET:

break;

case GTextField.ENTERED:

line1=R2textfield.getText();

temp_val = parseFloat(line1);

R2slider.setValue(temp_val);

break;

}

}

if(tfield == RoCtextfield){

switch (RoCtextfield.eventType){

case GTextField.CHANGED:

break;

case GTextField.SET:

break;

case GTextField.ENTERED:

line1=RoCtextfield.getText();

temp_val = parseFloat(line1);

RoCslider.setValue(temp_val);

break;

}

}

}

37

*Acknowledgements

I would like to thank everyone at the University of Birmingham and the Uni-

versity of Florida's IREU for their help with this project and my scienti�c

learning this summer. In particular, my thanks go to my project supervisor,

Dr. Andreas Freise, for all his patience and organization with the summer

projects; to all the people in Andreas's group: Dr. Stefan Hild, Dr. Simon

Chelkowski, Paul Fulda, Antonio Perreca, Jonathan Hallam, Deepali Lod-

hia, and Keiko Kokeyama, for always being available to help; to the other

summer students (Charlotte Bond, Emil Schreiber, and Matthew Arnold)

for helping so much to make this project successful (particularly Charlotte,

who contributed code for the Optical Resonator Calculator); and to Daniel

Brown, another summer student, who contributed extensive amount of code

and libraries to this project and was my go-to person for most of my pro-

gramming questions. I'd also like to acknowledge Professor Bernard Whit-

ing, Professor Guido Mueller, and all others involved with this program

at the University of Florida for all their work with the International REU

program. Last but not least, my gratitude goes to the National Science

Foundation (NSF) for funding and supporting the REU program.

38

Bibliography

[1] Ben Fry and Casey Reas. Processing. Website, 2009. http://www.

processing.org.

[2] Antonio Perreca. Lecture Notes. Summer lecture notes, University of

Birmingham, July 2009.

[3] Dr. Andreas Freise. Lasers and Quantum Optics. Year 4 Lecture Notes,

University of Birmingham, April 2009.

39

http://www.processing.org
http://www.processing.org

40

