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Introduction:

The Roma group of the INFN has been working on the new payload for the end towers
of Advanced VIRGO. The new payload is to be situated below the six seismic filters (al.,
2001). At the top of the payload is the new marionette reference mass, or MRM. This is the
biggest improvement over the old payload. A wire from the last seismic filter supports a
junction for the three wires that hold up the MRM. This junction was dubbed the “Chinese hat".
The MRM uses four arms with coils attached to control the marionette which has four
permanent magnets. The coils in the arms of the MRM work as electromagnets to attract and
repel the permanent magnets on the marionette, thereby stabilizing it. Below the MRM is the
marionette which serves as a mass to which the mirror and mirror reference mass are
attached.

The aforementioned mirror reference mass is like a frame that surrounds the mirror.
Like the MRM it has four coils which manipulate four permanent magnets on the mirror to
stabilize it. The mirror is the mirror which will be at the end of the north and west arms and
will reflect the laser. And finally this entire payload with be in a cryogenic chamber of around 4
degrees Kelvin. The interferometer is so sensitive that even changes caused my thermal
fluctuations can result in noise. This should eliminate thermal noise and with the new MRM the
payload should also be further isolated from seismic perturbations. (al., 2001)

It is important to know the frequencies of the pendulum modes of the payload because
they must be outside the sensitivity range of the interferometer. This is a requirement of the
payload. The sensitivity range is approximately between 10 Hz to 5000 Hz (al., 2001). The
seismic noise in this range must be as low as possible so the natural pendulum frequencies of
the payload need to be outside the sensitivity range. The frequencies also need to be known to
set up the control system that stabilizes the marionette and mirror. By simulating the payload
before it is constructed and implemented the frequencies can be optimized.

The following is the results of a finite element analysis on the VIRGO cryogenic payload.
The software package ANSYS was used to perform the dynamic simulations. With ANSYS one
can create a model, then "mesh” the model into many small pieces which the software then
uses to solve the differential equations used to find loads, forces, deformations, etc. that the
model experiences. Massimo Granata at the University of Rome “La Sapienza” created the
model I used. The goal was to find the modal frequencies of the payload and its components
and compare them to calculated frequencies. This was done in three different steps. In the first
we observed the modes of the payload without the MRM, then just the MRM by itself, and
finally the complete payload. In this way we can see the effect that the MRM has on the modes
of the payload.
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Pendulum z- 0.542759 0.505408
axis
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axis
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axis
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Mirror
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Pendulum 1.075000 0.944716
differential z-
axis
Description Frequency Calculated Picture
(Hz) Frequency
(Hz)
Bouncing y-axis | 15.389000 15.516400




Bouncing 25.930000 21.851300
differential y-

axis

Bouncing 33.888000 30.523200

differential y-
axis
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Description Frequency Calculated

(Hz) Frequency
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Rotational 1.021000 1.043080

differential y-

axis

Mirror 1.354000 1.277790

rotational y-

axis




The calculated frequencies for pendulum and bouncing modes were found using the following matrix:

Ky + Ky + K3 — Mypgrio 0° -k, —Kj
—K; Kz = Mpirror w? 0
_KB 0 K3 - Mmrif OJZ
where

Mass of the marionette: Momario = 117 kg

Mass of the mirror: Mopipror = 20 kg

Mass of the mirror reference mass: “imrif = 318 Kg

For pendulum modes:
Kl — M’ma’rio * g

Lma'rio

Where = 2.8 :"—z, Lonario = 0.4505 m

K2 and K3 are similar for the mirror and mirror reference mass using their respective masses and
Lonivwor = Lmrr'f = 0.600m .

For bouncing modes:

2
Ymarﬁo * Swmam'o

1 —3
Lmario

Yomario = 116 GPa

Where the Young’s Modulus , and the wire section Swmaric = 3 * 1073 m

Once again K; and K3 are similar for the mirror and mirror reference mass using their Young’s Modula

Fmirror = Ymniy = 69 GPa , and wire sections Swomirror = Swmpes = 1# 1073 m )

For torsion modes:
The masses Mmario, Mmirror, @aNd Myi¢ in the matrix must be replaced by the moment of inertia of the
components about the vertical axis y.

Tmario = 1.66790
Toirror = 0.19033

Tyis = 0.74794



}2*61

Kl =

Lmﬂrio
Where
Gl Ymm'(‘o

- 2(1 + Uma'rr’o)

The Poisson’s ratio Fmaric = 0.32

_ -3
The radius of the marionette’s wire Tmaric = 1.5% 1079 m

Kz — Mmiww g R«rzniwofr

Lmiwm‘

The radius of the mirror Rmirror = 0.175m

Ksis similar to K, with its respective mass, wire length, and Rm’ff =0.22m .

Conclusion:

One can solve for the modal frequencies ® by setting the matrix’s determinant equal to zero and
[11)

solving for ©. The reported frequencies = 7, . As we can see by using these calculations there is a strong
correlation between the theoretical modal frequencies and the frequencies as determined by ANSYS. The
only large discrepancy between the ANSYS reported frequencies and the calculated frequencies was for the
bouncing modes. | believe this is because the calculations did not take into account that the mirror and
mirror reference mass are suspended by four wires each.



Description Frequency Calculated Picture
(Hz) Frequency
(Hz)
Pendulum x- 0.648439 0.899216
axis
Pendulum z- 0.671513 0.899216

axis




Description Frequency Calculated Picture
(Hz) Frequency
(Hz)
Bouncing y-axis | 20.436000 22.534400
Description Frequency Calculated Picture
(Hz) Frequency
(Hz)
Rotational y- 0.062855 0.0712217

axis




Here more simple calculations can be used than in Part One. We can treat the MRM as a mass on
the end of a string.

For pendulum modes:

1 g

v=— [——

2% [Lonson

Where Lmpm = 0307 m

For bouncing modes:

Where the radius of the MRM’s wire Tmrm = 1.5 * 10~ 3 , the Young’s Modulus Yomprn = 116 GPa and
the MRM’s mass Momem = 133.23 kg

For torsion modes:

1 Ky

V= |/

Vo S | —

Where Tmrm = 11.367

2L ¢
Konpon = L
mrm
™
Jt2 = E r’r‘}'am
G = Yonrm
2(1 + Goppan)

Where Fmrm = 0.32

Conclusion:
Once again we observe the strong correlation between the theoretical frequencies and the
frequencies reported from ANSYS.



Picture

Description Frequency Calculated

(Hz) Frequency
(Hz)

Marionette 0.485520 0.384807

and mirror

pendulum x-

axis

Marionette 0.516633 0.384807

and mirror

pendulum z-

axis




Mirror
pendulum z-
axis

0.654370

0.643217

Mirror
pendulum x-
axis

0.654566

0.643217

Pendulum
differential x-
axis

0.729339

0.764725

ANSYS

TUN 30 20




Pendulum
differential z-
axis

0.744927

0.764725

Pendulum
differential x-
axis

1.023000

1.204120

Pendulum
differential z-
axis

1.030000

1.204120




Description Frequency Calculated Picture
(Hz) Frequency
(Hz)

Bouncing y-axis | 12.626000 12.457500

Bouncing 22.481000 20.994100

differential y-

axis
Mirror 25.962000 26.549600

bouncing y-axis




Bouncing 33.667000 37.897600
differential y-
axis
Description Frequency Calculated Picture
(Hz) Frequency
(Hz)
Torsion y-axis 0.054018 0.043974




Torsion
differential y-
axis

0.099445

0.099144

Marionette
and mirror
torsion y-axis

1.026000

1.043080

Mirror torsion
y-axis

1.362000

1.277800




The following matrix was used for the calculation of pendulum and bouncing frequencies for the complete
payload:

K + K — My w? —K, 0 0
—K; Ky + Ky + Ky — Mppgpio 0° —K3 —Kq
0 —K; Ky = Mooy 032 0
0 K, 0 Ky = Myyiy 07

Where M, Mmarior Mmirror, and Mp,i¢ are as previously defined.

For pendulum modes:
K, = Monrm * 8

me

K3, K3, and K, are similar with the mass and wire length replaced with the respective properties of the
marionette, mirror, and mirror reference mass.

For bouncing modes:

%, Yo * Sy muron

L'm‘rm

Ky, K3, and K, are similar with the MRM’s properties replaced by the properties of the marionette, the
mirror, and the mirror reference mass, respectively.

For torsion modes:
Once again the masses in the matrix must be replaced with the moments of inertia about the y-axis.
Kl 12 mrm ¥ Gl MM

me
Where

G. = Ym—m
1T 201 + Gorrn)

1
znr;};m

J27:»:r*m

K, is similar with the MRM'’s properties replaced by the marionette’s properties.



M’miwo‘r g R'fznirrm‘

K3=

Lmirror

K4 is similar to K with the mirror’s properties replaced by the mirror reference mass’ properties.

Conclusion:

As with the payload without the MRM, one can solve for the modal frequencies © by setting the
o

matrix’s determinant equal to zero and solving for . The reported frequencies ~ 7, . As we can see by
using these calculations there is a strong correlation between the theoretical modal frequencies and the
frequencies as determined by ANSYS. The only noticeably large discrepancy between the calculated
frequency and the frequency from ANSYS is for the last bouncing mode. | believe this is because the
calculation did not take into account the three wires that support the MRM and that the mirror and mirror
reference mass are suspended by four wires each.

For the pendulum modes we can observe that essentially the complete payload combines the
modal frequencies of the payload with the MRM and the MRM by itself. But because of the geometry the
modes of the MRM affect the rest of the payload. Also unique to the complete payload were the modes
that involved the movement of the MRM and the mirror and mirror reference mass while the marionette
remained stationary.

The torsion modes of the complete payload include the same torsion modes as the payload without
the MRM. However the torsion mode of the MRM by itself was replaced by the mode and differential mode
of the entire payload twisting.

The bouncing modes of the complete payload include the two bouncing modes of the mirror that
we observed on the payload without the MRM. However the bouncing of the payload without the MRM is
replaced by bouncing of the entire payload and the bouncing of just the MRM is replaced by a bouncing
differential of the entire payload.

We can conclude that the inclusion of the MRM results in essentially the combination of the modes
of the payload without the MRM and the modes of just the MRM. The modes from the MRM by itself
usually turn up as the entire payload moving. There are no dramatic effects on the range or values of modal
frequencies. Aside from the bouncing modes the pendulum modes for the payload are below the 10 Hz
threshold of the VIRGO sensitivity range. However the bouncing modes can be neglected because the six
seismic filters above the payload will suppress any effect those modes may have. Therefore the inclusion of
the MRM on the payload for VIRGO Advanced will not cause any foreseeable issues at least in terms of the
mechanical modal frequencies.

At the time of completion of this report the Roma team is working in the lab at VIRGO on a
prototype of the new payload. They are conducting tests on how it performs in the cryogenic chamber at 4
kelvin.

In the future work will be underway to investigate adding two more arms to the MRM for further
control of the marionette. Also silicon carbide is being considered as the material to build the MRM from.
The current material aluminum has the MRM weighing in at around one hundred kilograms. It would be
desirable to reduce this mass.
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