### **Modal Frequency Analysis of the Cryogenic Payload**

Jeff Garrett, University of Virginia '09

#### Introduction:

The Roma group of the INFN has been working on the new payload for the end towers of Advanced VIRGO. The new payload is to be situated below the six seismic filters (al., 2001). At the top of the payload is the new marionette reference mass, or MRM. This is the biggest improvement over the old payload. A wire from the last seismic filter supports a junction for the three wires that hold up the MRM. This junction was dubbed the "Chinese hat". The MRM uses four arms with coils attached to control the marionette which has four permanent magnets. The coils in the arms of the MRM work as electromagnets to attract and repel the permanent magnets on the marionette, thereby stabilizing it. Below the MRM is the marionette which serves as a mass to which the mirror and mirror reference mass are attached.

The aforementioned mirror reference mass is like a frame that surrounds the mirror. Like the MRM it has four coils which manipulate four permanent magnets on the mirror to stabilize it. The mirror is the mirror which will be at the end of the north and west arms and will reflect the laser. And finally this entire payload with be in a cryogenic chamber of around 4 degrees Kelvin. The interferometer is so sensitive that even changes caused my thermal fluctuations can result in noise. This should eliminate thermal noise and with the new MRM the payload should also be further isolated from seismic perturbations. (al., 2001)

It is important to know the frequencies of the pendulum modes of the payload because they must be outside the sensitivity range of the interferometer. This is a requirement of the payload. The sensitivity range is approximately between 10 Hz to 5000 Hz (al., 2001). The seismic noise in this range must be as low as possible so the natural pendulum frequencies of the payload need to be outside the sensitivity range. The frequencies also need to be known to set up the control system that stabilizes the marionette and mirror. By simulating the payload before it is constructed and implemented the frequencies can be optimized.

The following is the results of a finite element analysis on the VIRGO cryogenic payload. The software package ANSYS was used to perform the dynamic simulations. With ANSYS one can create a model, then "mesh" the model into many small pieces which the software then uses to solve the differential equations used to find loads, forces, deformations, etc. that the model experiences. Massimo Granata at the University of Rome "La Sapienza" created the model I used. The goal was to find the modal frequencies of the payload and its components and compare them to calculated frequencies. This was done in three different steps. In the first we observed the modes of the payload without the MRM, then just the MRM by itself, and finally the complete payload. In this way we can see the effect that the MRM has on the modes of the payload.

# Part One: Payload without the MRM

# Pendulum Modes

| Description         | Frequency<br>(Hz) | Calculated<br>Frequency<br>(Hz) | Picture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------|-------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pendulum z-<br>axis | 0.542759          | 0.505408                        | The first of the state of the s                                                                                                                                                                                                                                                                                                                                                     |
| Pendulum x-<br>axis | 0.586284          | 0.505408                        | 1 NORAL SOLUTION<br>SUB -3<br>FREQ:5.56238<br>NC - 06237<br>NC - 00637<br>NC |

| Mirror<br>pendulum z-<br>axis       | 0.651715 | 0.643217 | JUN 23 2003<br>SUB =4<br>SUB =4<br>S |
|-------------------------------------|----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mirror<br>pendulum x-<br>axis       | 0.651801 | 0.643217 | Incode         JUN 23 2008           JUN 23 2008         JUN 23 2008           JUN 20021         JUN 20021           JUN 20021         JUN 200318                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Pendulum<br>differential x-<br>axis | 1.073000 | 0.944716 | NOAL SOLUTION<br>STEP 1<br>STEP 1<br>US 2 000<br>17:08:31<br>US 2 000<br>17:08:31<br>US 2 000<br>17:08:31<br>STEP 2<br>US 2 000<br>17:08:31<br>STEP 2<br>STEP 2        |

| Pendulum<br>differential z-<br>axis | 1.075000 | 0.944716 | NOCAL SOLUTION<br>STEP-1<br>BUE-9<br>FT22-1.27(AVG)<br>EXTSOLUTION<br>STE2-1.27(AVG)<br>EXTSOLUTION<br>STE2-1.27(AVG)<br>EXTSOLUTION<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>STE2-1.27(AVG)<br>ST | UN 23 2006<br>17:12:05    |
|-------------------------------------|----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
|                                     |          |          | 0689160508802278400334702413 .039479                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .075611<br>.093677<br>x_t |

# Bouncing Modes

| Description     | Frequency<br>(Hz) | Calculated<br>Frequency<br>(Hz) | Picture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|-----------------|-------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Bouncing y-axis | 15.389000         | 15.516400                       | The set of |  |

| Bouncing<br>differential y-<br>axis | 25.930000 | 21.851300 | 1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STE |
|-------------------------------------|-----------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bouncing<br>differential y-<br>axis | 33.888000 | 30.523200 | INDOAL BOLUTION         JUI 23 2008           STEP-1         JUI 23 2008           STEP-1         JUI 23 2008           STEV-1         JUI 23 2008           JUI 23 2008         JUI 23 2008           STEV-1         JUI 23 2008           STEV-1         JUI 23 2008           STEV-1         JUI 23 2008           JUI 23 2008         JUI 23 2008           STEV-1         JUI 23 2008           STEV - 908-04         JUI 23 2008           JUI - 908-04         JUI 23 2008           JUI - 908-04         JUI 23 2008           - 908-04         JUI 20 2008           - 908-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

## Torsion Modes

| Description                           | Frequency | Calculated        | Picture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------|-----------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       | (Hz)      | Frequency<br>(Hz) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Rotational<br>differential y-<br>axis | 1.021000  | 1.043080          | THE ALBORITOR UNDER STREET AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Mirror<br>rotational y-<br>axis       | 1.354000  | 1.277790          | THE PLICE SOLUTION<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>ST |

The calculated frequencies for pendulum and bouncing modes were found using the following matrix:

$$\begin{bmatrix} K_{1} + K_{2} + K_{3} - M_{mario} \, \omega^{2} & -K_{2} & -K_{3} \\ -K_{2} & K_{2} - M_{mirror} \, \omega^{2} & 0 \\ -K_{3} & 0 & K_{3} - M_{mrif} \, \omega^{2} \end{bmatrix}$$

where

Mass of the marionette: 
$$M_{mario} = 117 \ kg$$

Mass of the mirror:  $M_{mirror} = 20 \ kg$ 

Mass of the mirror reference mass:  $M_{mrif} = 31.8 \ kg$ 

For pendulum modes:

$$K_{1} = \frac{M_{mario} * g}{L_{mario}}$$

Where = 9.8  $\frac{m}{s^2}$  ,  $L_{mario} = 0.4505 \ m$  .

K2 and K3 are similar for the mirror and mirror reference mass using their respective masses and  $L_{mirror} = L_{mrif} = 0.600 m$ 

## For bouncing modes: $_{W} = \frac{Y_{mario} * S_{w mario}^{2}}{2}$

$$K_1 = \frac{L_{mario} + S_{Wmar}}{L_{mario}}$$

Where the Young's Modulus  $Y_{mario} = 116 GPa$ , and the wire section  $S_{w mario} = 3 * 10^{-3} m$ .

Once again K<sub>2</sub> and K<sub>3</sub> are similar for the mirror and mirror reference mass using their Young's Modula  $Y_{mirror} = Y_{mrif} = 69 \ GPa$ , and wire sections  $S_{w\,mirror} = S_{w\,mrif} = 1 * 10^{-3} \ m$ .

#### For torsion modes:

The masses  $M_{mario}$ ,  $M_{mirror}$ , and  $M_{mrif}$  in the matrix must be replaced by the moment of inertia of the components about the vertical axis y.

$$I_{mario} = 1.66790$$

 $I_{mirror} = 0.19033$ 

 $I_{mrif} = 0.74794$ 

$$K_1 = \frac{I_2 * G_1}{L_{mario}}$$

Where

$$G_{1} = \frac{Y_{mario}}{2(1 + \sigma_{mario})}$$

The Poisson's ratio  $\sigma_{mario}=0.32$  .

$$I_2 = \frac{1}{2}\pi r_{mario}^4$$

The radius of the marionette's wire  $r_{mario} = 1.5 * 10^{-3} \ m$  .

$$K_2 = \frac{M_{mirror} g R_{mirror}^2}{L_{mirror}}$$

The radius of the mirror  $R_{mirror} = 0.175 \ m$  .

K<sub>3</sub> is similar to K<sub>2</sub> with its respective mass, wire length, and  $R_{mrif}=0.22~m$  .

#### **Conclusion:**

One can solve for the modal frequencies  $\omega$  by setting the matrix's determinant equal to zero and solving for  $\omega$ . The reported frequencies  $= \frac{\omega}{2\pi}$ . As we can see by using these calculations there is a strong correlation between the theoretical modal frequencies and the frequencies as determined by ANSYS. The only large discrepancy between the ANSYS reported frequencies and the calculated frequencies was for the bouncing modes. I believe this is because the calculations did not take into account that the mirror and mirror reference mass are suspended by four wires each.

## Part Two: The MRM

## Pendulum Modes

| Description         | Frequency<br>(Hz) | Calculated<br>Frequency<br>(Hz) | Picture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------|-------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pendulum x-<br>axis | 0.648439          | 0.899216                        | I HOAL SOLUTION<br>STEP-1<br>DUE -2<br>STEP-1<br>DUE -2<br>C(ARO)<br>REYSO<br>IC - 02354<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Pendulum z-<br>axis | 0.671513          | 0.899216                        | NGAL SOLUTION<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1 |

## Bouncing Mode

| Description     | Frequency<br>(Hz) | Calculated<br>Frequency<br>(Hz) | Picture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |
|-----------------|-------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Bouncing γ-axis | 20.436000         | 22.534400                       | NOAL SOLUTION<br>SEE-1<br>SEE - (AVG)<br>REX = 0.07212<br>SEX = 0.07212<br>S | AUSYS<br>JUN 23 2000<br>16:14:53 |

## Torsion Mode



Here more simple calculations can be used than in Part One. We can treat the MRM as a mass on the end of a string.

For pendulum modes:

$$\nu = \frac{1}{2\pi} \sqrt{\frac{g}{L_{mrm}}}$$

Where  $L_{mrm} = 0.307 \ m$  .

For bouncing modes:

$$\nu = \frac{1}{2\pi} \sqrt{\frac{\pi r_{mrm}^2 Y_{mrm}}{L_{mrm} M_{mrm}}}$$

Where the radius of the MRM's wire  $r_{mrm} = 1.5 \times 10^{-3} m$ , the Young's Modulus  $Y_{mrm} = 116 GPa$ , and the MRM's mass  $M_{mrm} = 133.23 kg$ .

For torsion modes:

$$\nu = \frac{1}{2\pi} \sqrt{\frac{K_{mrm}}{I_{mrm}}}$$

Where  $I_{mrm} = 11.367$ .

$$K_{mrm} = \frac{2I_2 G}{L_{mrm}}$$

$$I_2 = \frac{\pi}{2} r_{mrm}^4$$

$$G = \frac{T_{mrm}}{2(1 + \sigma_{mrm})}$$

Where  $\sigma_{mrm} = 0.32$ .

#### **Conclusion:**

Once again we observe the strong correlation between the theoretical frequencies and the frequencies reported from ANSYS.

# Part Three: The Complete Payload

# Pendulum Modes

| Description                                     | Frequency<br>(Hz) | Calculated<br>Frequency | Picture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------|-------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Marionette<br>and mirror<br>pendulum x-<br>axis | 0.485520          | 0.384807                | NOCAL SOUTION<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1 |
| Marionette<br>and mirror<br>pendulum z-<br>axis | 0.516633          | 0.384807                | NOAL SOUTION<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1<br>STEP-1  |

| Mirror<br>pendulum z-<br>axis       | 0.654370 | 0.643217 | Image: Control of the set of the                                                                                          |
|-------------------------------------|----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mirror<br>pendulum x-<br>axis       | 0.654566 | 0.643217 | NODAL SOLUTION<br>STEP-1<br>DUB-0 2000<br>DUB-3 54456<br>US - 64070<br>REYSO<br>DWK - 155325<br>SWK - 00201<br>SWK - 001703<br>- 00001 - 00194 - 788-00 - 4478-04 - 978-00 - 00189<br>- 00001 - 00194 - 788-00 - 4478-04 - 978-00 - 00189<br>- 001703 - 00194 - 788-00 - 4478-04 - 978-00 - 00189<br>- 001703 - 788-00 - 4478-04 - 978-00 - 00189<br>- 001703 - 788-00 - 4478-04 - 978-00 - 00189<br>- 001703 - 788-00 - 4478-04 - 978-00 - 00189<br>- 001703 - 788-00 - 4478-04 - 978-00 - 00189<br>- 001703 - 788-00 - 4478-04 - 978-00 - 00189<br>- 001703 - 788-00 - 4478-04 - 978-00 - 00189<br>- 001703 - 788-00 - 4478-04 - 978-00 - 00189<br>- 001703 - 788-00 - 4478-04 - 978-00 - 00189<br>- 001703 - 788-00 - 4478-04 - 978-00 - 00189<br>- 001703 - 788-00 - 4478-04 - 978-00 - 00189<br>- 001703 - 788-00 - 4478-04 - 978-00 - 00189<br>- 001703 - 788-00 - 4478-04 - 978-00 - 00189<br>- 001703 - 788-00 - 4478-04 - 978-00 - 00189<br>- 001703 - 788-00 - 4478-04 - 978-00 - 00189<br>- 001703 - 788-00 - 4478-04 - 978-00 - 00189<br>- 001703 - 788-00 - 4478-04 - 978-00 - 00189<br>- 001703 - 788-00 - 4478-04 - 978-00 - 00189<br>- 001703 - 788-00 - 4478-04 - 978-00 - 00189<br>- 001703 - 788-00 - 4478-04 - 978-00 - 00189<br>- 001703 - 788-00 - 4478-04 - 978-00 - 00189<br>- 001703 - 788-00 - 4478-04 - 978-00 - 00189<br>- 001703 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-00 - 788-000 - 788-000 - 788-000 - 788-000 - 788-000 - 788-000 - 788-0000 - 788-0000 - 788-0000 - 788-000000 - 7 |
| Pendulum<br>differential x-<br>axis | 0.729339 | 0.764725 | INCAL SOLUTION         JUN 30.2008           STEP-1         JUN 30.2008           JUN 30.2008         JUN 30.2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| Pendulum<br>differential z-<br>axis | 0.744927 | 0.764725 | NOLM. SOLUTION         JUN 30 2008           STSN 1         JUN 30 2008           DERSON         ASS27           UZ         GAV3           DKK = 1428263         DKK = 1428263           DKK = 110293         DKK = 110293           DKK = 110293         DKK = 10008          128568        011400          128568        011400          128568        011400          118268        011400          118268        011400          118268        011400          118268        011400          118268         .001250          118268         .001250          118268         .001250          118268         .011250           File: Hilharys WorkSpace(Crio_new)eff(new(CrioPayload)braccioal.x_t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------|----------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pendulum<br>differential x-<br>axis | 1.023000 | 1.204120 | Image: solution state of solution s |
| Pendulum<br>differential z-<br>axis | 1.030000 | 1.204120 | INDAL BOLUTION         JUB 30.2000           STEP-1         JUB 30.2000           STEP-1.03         JUB 30.2000           D2         GR0228           NRN 0.06613         GR0228           SRN 0.06613         GR0200           0.06613         -0.01601           0.06614         -0.01601           0.01601         -0.01601           0.01601         -0.01601           0.01601         -0.01601           0.01601         -0.01601           0.01601         -0.01601           STAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

# Bouncing Modes

| Description                         | Frequency<br>(Hz) | Calculated<br>Frequency<br>(Hz) | Picture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------|-------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bouncing y-axis                     | 12.626000         | 12.457500                       | The second secon |
| Bouncing<br>differential y-<br>axis | 22.481000         | 20.994100                       | NOAL SOLUTION       JUN 30 2000         UB = 20       JUN 30 2000         US = 20 (P721)       Intervention         WH =003319       Intervention         SHC = .004271       Intervention         JUN = 20       Intervention         JUN = 20       Intervention         JUN = 20       Intervention         SHC = .004271       Intervention         JUN = 20       Intervention         JUN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Mirror<br>bouncing y-axis           | 25.962000         | 26.549600                       | THE PALE SUBJECT STREET |

| Bouncing<br>differential y-<br>axis | 33.667000 | 37.897600 | 1<br>NGAL SOLUTION<br>STEP-1<br>SUB-23<br>FRE-33.667<br>U2 CAVG)<br>FMX =-201376<br>SMX =-001378<br>SMX =-001377 | JUN 30 2008<br>15:24:17                                             |
|-------------------------------------|-----------|-----------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
|                                     |           |           | 001378001028588-53340F-03 .322<br>File: H:\Ansys WorkSpace\Crig_new\jeff\new\Crig                                | 00 .001045 .001391<br>00 .001045 .001737<br>-08ayload\braccioal.x_t |

## Torsion Modes

| Description    | Frequency | Calculated        | Picture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------|-----------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | (HZ)      | Frequency<br>(Hz) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Torsion y-axis | 0.054018  | 0.043974          | The second secon |

| Torsion<br>differential y-<br>axis         | 0.099445 | 0.099144 | Image: Constraint of the second sec                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------|----------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Marionette<br>and mirror<br>torsion y-axis | 1.026000 | 1.043080 | NOAL SOLUTION<br>STEP-1<br>DIB -10-26<br>ST -10-26 |
| Mirror torsion<br>y-axis                   | 1.362000 | 1.277800 | INCAL BOLUTION         JUN 30 2000           STEP-1         JUN 30 2000           PR0-1.362         UZ           DZ         (AVG)           REX-365519         UZ           SEX - 34857         UZ           SEX - 34857         UZ          19365        03873          19365        03873          19365         .03873           File: H:\Annyy MorkSpace\Crio_rew\jeft\nev\CrioFayload\bracciosl.x_t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

The following matrix was used for the calculation of pendulum and bouncing frequencies for the complete payload:

$$\begin{bmatrix} K_1 + K_2 - M_{mrm} \, \omega^2 & -K_2 & 0 & 0 \\ -K_2 & K_2 + K_3 + K_4 - M_{mario} \, \omega^2 & -K_3 & -K_4 \\ 0 & -K_3 & K_3 - M_{mirror} \, \omega^2 & 0 \\ 0 & -K_4 & 0 & K_4 - M_{mrif} \, \omega^2 \end{bmatrix}$$

Where  $M_{\text{mrm}},\,M_{\text{mario}},\,M_{\text{mirror}},\,\text{and}\,\,M_{\text{mrif}}\,\text{are as previously defined.}$ 

For pendulum modes:  

$$K_1 = \frac{M_{mrm} * g}{L_{mrm}}$$

K<sub>2</sub>, K<sub>3</sub>, and K<sub>4</sub> are similar with the mass and wire length replaced with the respective properties of the marionette, mirror, and mirror reference mass.

For bouncing modes:  

$$K_1 = \frac{Y_{mrm} * S_{wmrm}^2}{L_{mrm}}$$

 $K_2$ ,  $K_3$ , and  $K_4$  are similar with the MRM's properties replaced by the properties of the marionette, the mirror, and the mirror reference mass, respectively.

#### For torsion modes:

Once again the masses in the matrix must be replaced with the moments of inertia about the y-axis.

$$K_1 = \frac{I_{2\,mrm} * G_{1\,mrm}}{L_{mrm}}$$

Where

$$G_{1 mrm} = \frac{Y_{mrm}}{2(1 + \sigma_{mrm})}$$

$$I_{2\,mrm} = \frac{1}{2}\pi r_{mrm}^4$$

K<sub>2</sub> is similar with the MRM's properties replaced by the marionette's properties.

$$K_{\rm B} = \frac{M_{mirror} \ g \ R_{mirror}^2}{L_{mirror}}$$

 $K_4$  is similar to  $K_3$  with the mirror's properties replaced by the mirror reference mass' properties.

#### **Conclusion:**

As with the payload without the MRM, one can solve for the modal frequencies  $\omega$  by setting the matrix's determinant equal to zero and solving for  $\omega$ . The reported frequencies  $=\frac{\omega}{2\pi}$ . As we can see by using these calculations there is a strong correlation between the theoretical modal frequencies and the frequencies as determined by ANSYS. The only noticeably large discrepancy between the calculated frequency and the frequency from ANSYS is for the last bouncing mode. I believe this is because the calculation did not take into account the three wires that support the MRM and that the mirror and mirror reference mass are suspended by four wires each.

For the pendulum modes we can observe that essentially the complete payload combines the modal frequencies of the payload with the MRM and the MRM by itself. But because of the geometry the modes of the MRM affect the rest of the payload. Also unique to the complete payload were the modes that involved the movement of the MRM and the mirror and mirror reference mass while the marionette remained stationary.

The torsion modes of the complete payload include the same torsion modes as the payload without the MRM. However the torsion mode of the MRM by itself was replaced by the mode and differential mode of the entire payload twisting.

The bouncing modes of the complete payload include the two bouncing modes of the mirror that we observed on the payload without the MRM. However the bouncing of the payload without the MRM is replaced by bouncing of the entire payload and the bouncing of just the MRM is replaced by a bouncing differential of the entire payload.

We can conclude that the inclusion of the MRM results in essentially the combination of the modes of the payload without the MRM and the modes of just the MRM. The modes from the MRM by itself usually turn up as the entire payload moving. There are no dramatic effects on the range or values of modal frequencies. Aside from the bouncing modes the pendulum modes for the payload are below the 10 Hz threshold of the VIRGO sensitivity range. However the bouncing modes can be neglected because the six seismic filters above the payload will suppress any effect those modes may have. Therefore the inclusion of the MRM on the payload for VIRGO Advanced will not cause any foreseeable issues at least in terms of the mechanical modal frequencies.

At the time of completion of this report the Roma team is working in the lab at VIRGO on a prototype of the new payload. They are conducting tests on how it performs in the cryogenic chamber at 4 kelvin.

In the future work will be underway to investigate adding two more arms to the MRM for further control of the marionette. Also silicon carbide is being considered as the material to build the MRM from. The current material aluminum has the MRM weighing in at around one hundred kilograms. It would be desirable to reduce this mass.

# References

Ballardin, Et al. "Measurement of the VIRGO superattenuator performance for seismic noise suppression." Review of Scientific Instruments 72 (2001): 3643-652.