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Introduction

Displacement and Frequency Noise Free Interferometry (DFI) is a new method of 

gravitational wave detection.  It distinguishes itself from other forms of interferometry based 

gravitational wave detectors by using multiple interferometers for redundant sensing of the 

displacement of the test masses to cancel out all kinds of displacement noise.  The belief 

previously held was that free falling test masses were necessary to detect signals as small as 

a gravitational wave, but DFI has shown that this stipulation is unnecessary.  This results from 

the fact that mirror displacement and gravitational wave signals affect the propagation of the 

laser along the beam axis differently.

Background / Previous Work

Displacement and Frequency Noise Free Interferometry was first proposed by S. 

Kawamura and Y. Chen (2004 Phys. Rev. Lett. 93, 211103)1.  In this letter, they make the 

case for DFI as a new method of gravitational wave detection free of many of the pitfalls of 

other methods.  The following is a brief summary.  A thought experiment is put forth in which 

three freely falling objects (A, B, and C) are placed on a line with B in the center of A and C. 

A, B, and C are assumed to each contain an initially synchronized clock, and there is a 

gravitational wave which is propagating along a path normal to the line connecting these three 

objects and has a period that is equivalent to distance between A and B divided by the speed 

of light (figure 1).  Note that all the objects are subject to random fluctuations in position.  A 

burst of light is emitted from object B toward both A and C at a time measured by B, and 

Be is the displacement of B at the time of emission.  The pulse will be reflected by A and C 

at times Ar and Br  measured by A and C, respectively.  The pulses will then reach B 

again at times BrA and BrC , respectively, as measured by B.  The difference between the 
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 two times is of the order O  hL
c
  for a gravitational wave with an amplitude of h.  So the 

difference between BrA

c
 and BrC

c
is of the order 

v

c

hL

c
 where v is the velocity of 

object B.  Since v is much less than c, we can say that BrA≃BrC .  Letting S g represent 

the gravitational wave signal, the light travel times are then given as:

BA=S g
Be−Ar

c
(1)

AB=−S g
BrA−Ar

c
(2)

BC=S g
Cr−Be

c
(3)

CB=−S g
Cr−BrC 

c
(4)

These four quantities can be combined in such a way as to cancel out the displacements.

0=BA−ABBC−CB (5)

Working this out yields simply 0=4Sg .  This is significant because a signal that had been 



riddled with displacement noise is now purely comprised of the gravitational wave signal.

This is all made possible by the fact that laser interferometers are affected differently 

from mirror displacement than they are by gravitational waves.  The effects of mirror 

displacement are compounded at the location of the mirror, whereas the effects of a 

gravitational wave are continuous along the propagation path of the laser.  A previous 

experiment 2  that utilized a two dimensional version of the three dimensional instrument 

which this paper will go on to discuss demonstrates this principle.  Their setup made use of a 

pair of counterpropagating Mach-Zehnder interferometers aligned on a plane, as opposed to 

the non-planar setup used in this paper's experiment, to demonstrate the cancellation of 

mirror displacement noise (figure 2).  It made use of four folding mirrors, FM1 and FM2, for 

the inner Mach-Zehnder and FM3 and FM4 for the outer.  By combining the two signals from 

the inner interferometer, the noise resulting from the displacement of FM1 and FM2 is 

canceled out.  The second, outer interferometer is similarly insensitive to the motion of FM3 

and FM4.  Since these two bidirectional interferometers share beam splitters, combining all 

four signals allows us to cancel the noise of the displacement of the beam splitters, and thus 

allows the system to be completely insensitive to displacement noise.  An electro-optical 

modulator (EOM) is placed at the location of FM1 and used to simulate the signal of mirror 

displacement.  A second EOM, which is moved from one place along the laser's path to the 

next with the signals from each run being added together, is used to measure the 

interferometer's response to gravitational waves.  When the displacement noise is simulated 

in FM1, this introduces a phase change to the laser beams which are reflected off of the 

mirror in each direction.  Since this is at the center of the beam path, and the effect of 

displacement noise is concentrated in only the one location, the evidence of this phase 

change will reach output 1 and output 2 at the same time, and thus be canceled out. 

However, one can think of the effect of a gravitational wave as giving the medium of laser 

propagation a refractive index that varies with time and position.  The simulated gravitational 

wave, which will affect the laser's phase at every point and not just the midpoint, should be 

preserved.  The transfer function from the displacement of FM1 to the output sensor is 



H D1a , b=±

c
exp−il1B


c
 (6)

H D2a , b=±

c
exp−il1


c
 (7)

and assuming that l=l 1=l 1B since FM1 is at the midpoint of the beam's propagation, all 

signals will be of the form

H D 1,2 a , b=±

c
exp−il


c
 (8)

but with different signs.  In contrast, if, for simplicity's sake, we substitute a phase modulation 

at some point other than the midpoint for an exact simulation of a gravitational wave and 

combine output 1 and output 2 of the inner Mach-Zehnder, we obtain

H sGW=±

c
exp−il1


c
−exp −il 1B


c


and so all displacement noise has been canceled while the gravitational wave signal survives. 

Data taken using this setup is reproduced in Figures 3 and 4.

Figure 2  (S. Sato,et al., 2007 Phys. Rev. Lett. 97, 141101)



Figure 3    The red and blue lines near the top are individual photodetectors, 

and they almost  overlap.   Combining the signals yields the green curve, 

which shows about 30 dB of suppression between 10 kHz and 30 MHz. (S. 

Sato,et al., 2007 Phys. Rev. Lett. 97, 141101)

Figure  4   This is a graph of the response to a simulated gravitational wave. 

Again, the amplitude of the output of the of the photodetectors is similar, but 

the phase delay in  the higher  frequency region causes the signals  to  add 

instead of interfere. (S. Sato ,et al., 2007 Phys. Rev. Lett. 97, 141101) 

Purpose

This past summer, construction was begun on a new three dimensional DFI setup at 



the NAOJ campus in Mitaka.  This three dimensional design was first suggested by Y. Chen 

et al  in the 2006 Physics Review Letters 97 151103.  It is considered to be a possible 

forerunner to both future ground and space-based gravitational wave detectors.  It maintains 

all of the benefits of the previous two dimensional DFI setup, including the insensitivity to 

mirror and beam splitter displacement.  In addition, for reasons beyond the scope of this 

paper, it has the advantage of less restrictive shot noise limitations at low frequencies, 

improving from ~ f 3 , the best possible from any two dimensional scheme compliant with 

our definition of DFI, to ~ f 2 , the best available from any possible DFI configuration.  This is 

because, as was previously shown, at frequencies near zero, gravitational wave signals 

become indistinguishable from mirror displacements.

Experimental Setup

Ideally, the three dimensional DFI setup we were to build would have the shape of a 

regular octahedron, with each arm the same length as every other, as shown in figure 5.  The 

left portion of the figure shows it tilted to emphasize its shape; while the right demonstrates 

how it would exist on the optical table.  Much like the previous two dimensional incarnation, 

this setup employs two bidirectional Mach-Zehnder interferometers for a total of four 

interferometry signals.  The four interferometers, MZ1-4, would be constructed such that MZ1 

and MZ3, referred to as the “lower” interferometers, would overlap using mirrors C2 and D2, 

and the addition of these signals is insensitive to the displacement of these two mirrors. 

Similarly, MZ2 and MZ4, or the “upper” interferometers, would be insensitive to displacement 

in C1 and D1.  Once the setup was aligned, the addition of all four signals would be 

insensitive to displacement of the beam splitters as well. This shape would become distorted 

during the building and alignment phases, however.  This was due to a variety of reasons, 

some practical, such as keeping the upper interferometer below eye level, as well as some 

simply resulting from the many adjustments being made in order to align the interferometers. 

Fortunately, the strict symmetrical shape of the proposed design is not theoretically necessary 

for true DFI.



Figure 5:  Left: Original concept of an octahedron formed by beam splitters A and B, mirrors C1 and 

D1 for the first bidirectional Mach-Zehnder, and C2 and D2 for the other.

Right:  A concept drawing of how it should be built on the optical table.  Can be 

thought of as tilting the octahedron on its side.

I made an early attempt to align the setup, but as expected, achieving alignment of 

both the upper and lower bidirectional interferometers simultaneously was not simple.  Once 

the lower interferometer was aligned, attempting to align the higher without adjusting the 

beam splitter seemed futile.  An attempt was made to simulate the situation using 

Mathematica to calculate how precisely the optics must be placed to determine if it would be 

realistic to expect to obtain suitable contrast by hand.  To do this, a gaussian beam was 

defined with properties similar to the one used in the setup.  The equations and properties F

given below, where the wavelength is 1064nm, the beam waist is 200µm, the desired spot 

size is 5mm, and the separation distance of the beams is given by d.
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The method used was to take a beam with the same beam waist as the laser, propagate it 

until reaching the typical spot size of 5mm, and then see how large of a separation distance 

would be acceptable.  A plot of the contrast as a function of separation distance is given in 

figure 6.  Note that contrast is defined by C=
Pmax−Pmin

PmaxPmin
.  It was decided that a contrast 

ratio of 0.5 would be acceptable.  This occurs at around d = 300µm, which is quite difficult to 

obtain by hand. 

Figure 6 Figure 7

In light of this, a new method of aligning the interferometers was developed.  A sliding 

stage was installed beneath the higher beam splitter.  The grid marks in figure 7 represent the 

holes in the optical table.  The angles Θ1 and 2 were measured for both beam splittersΘ  

using the optical table as a reference and then these measurements were used to ensure that 

the beam splitter angles were identical.  Next, sliding stages were installed beneath the higher 

and lower mirrors of one side of the interferometer (those on the rightmost side of figure 9 

below) such that moving the stage would slide the mirrors along the beam axis coming from 

the higher beam splitter.  An optical lever was constructed to sense the position and angle of 

the lower beam splitter (as shown in figure 8).  This was done by using a beam splitter to 

input a laser beam to the lower beam splitter, then using a mirror to fold the beam reflected 

from the beam splitter on to piece of grid paper.  The setup was then aligned for the lower 

interferometer and the position of the optical lever marked using an infrared sensor card.  The 



position of the sliding stage for the lower mirror was then moved randomly a small amount. 

The interferometer was then realigned and the position remarked.  This established a line on 

the grid paper which could be used to predict the optical lever's response to small changes in 

the position of the lower mirror.  Next, this procedure was repeated for the higher mirror.  The 

Figure 8 Figure 9

intersection point of the two lines was calculated and the mirrors moved along the sliding 

stages to the positions which should correspond to that point.  The linear approximation of the 

optical lever's response to the mirror movement was accurate enough for small changes that 

this was successful after only a few iterations.  Figure 9 shows a diagram of the finished 

interferometer with roughly measured dimensions included.  Photo detectors and faraday 

isolators were installed in their permanent locations to read all four outputs.  Filters were also 

put in place in front of all four photo detectors in order to ensure that each measured a similar 

signal to ensure the best cancellation of displacement noise.  Figures 10-13 below showcase 

the contrasts obtained from each interferometer.



    Figure 10     Figure 11

Figure 12 Figure 13

After the interferometers were all built and aligned, the process of controlling began. 

PZTs were in place on one higher and one lower mirror (the same mirrors that were placed on 

stages).  The signal from PD1 was used to control the lower interferometers, MZ1 and MZ3 in 

figure 9 above, and PD4 was used to control the higher interferometers, MZ2 and MZ4. 

Figure 14 shows the control scheme.  The signal from a photo detector is sent into the sum 

amplifier along with a signal of a DC generator.  This DC signal is used to offset the PD signal 

to ensure a lock at the midfringe.  Next the signal is sent through a low-pass filter.  Initially the 

gain of the filter was too low (around 1), so it was altered to match the schematic shown in 

Figure 15.  From the low-pass filter, the signal is sent to the PZT driver, which then controls 

the PZT.  Figure 16 displays all four interferometer signals locked simultaneously.

Figure 14



Figure 15 Figure 16

Conclusions / Future Work

The objective of this project was to build and align the first three dimensional DFI 

interferometry set up.  As such, it was a success.  However, proof of the 3D setup's superior 

sensitivity to gravitational waves, the purpose for building it, remains to be seen.  Scientists 

and graduate students working at the NAOJ will expand upon the setup.  An EOM will be 

added at the position of a mirror, at the midpoint of the laser's path, to phase modulate the 

laser and simulate mirror displacement.  Another will be added away from the midpoint to 

map the setup's response to gravitational wave signals much like what was done for the two 

dimensional setup.  This is likely to be finished in a matter of weeks as the most complicated, 

tedious, and unprecedented portion of the work, aligning the interferometers in three 

dimensions, has already been completed.  The discipline of DFI as a whole will continue to be 

explored as a possibility for future large scale gravitational wave detectors.
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